Hong Xiaotong, Sanaat Amirhossein, Salimi Yazdan, Nkoulou René, Arabi Hossein, Lu Lijun, Zaidi Habib
School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
Med Phys. 2025 Jul;52(7):e17871. doi: 10.1002/mp.17871. Epub 2025 May 8.
Cardiac perfusion PET is commonly used to assess ischemia and cardiovascular risk, which enables quantitative measurements of myocardial blood flow (MBF) through kinetic modeling. However, the estimation of kinetic parameters is challenging due to the noisy nature of short dynamic frames and limited sample data points.
This work aimed to investigate the errors in MBF estimation in PET through a simulation study and to evaluate different parameter estimation approaches, including a deep learning (DL) method.
Simulated studies were generated using digital phantoms based on cardiac segmentations from 55 clinical CT images. We employed the irreversible 2-tissue compartmental model and simulated dynamic N-ammonia PET scans under both rest and stress conditions (220 cases each). The simulations covered a rest K range of 0.6 to 1.2 and a stress K range of 1.2 to 3.6 (unit: mL/min/g) in the myocardium. A transformer-based DL model was trained on the simulated dataset to predict parametric images (PIMs) from noisy PET image frames and was validated using 5-fold cross-validation. We compared the DL method with the voxel-wise nonlinear least squares (NLS) fitting applied to the dynamic images, using either Gaussian filter (GF) smoothing (GF-NLS) or a dynamic nonlocal means (DNLM) algorithm for denoising (DNLM-NLS). Two patients with coronary CT angiography (CTA) and fractional flow reserve (FFR) were enrolled to test the feasibility of applying DL models on clinical PET data.
The DL method showed clearer image structures with reduced noise compared to the traditional NLS-based methods. In terms of mean absolute relative error (MARE), as the rest K values increased from 0.6 to 1.2 mL/min/g, the overall bias in myocardium K estimates decreased from approximately 58% to 45% for the NLS-based methods while the DL method showed a reduction in MARE from 42% to 18%. For stress data, as the stress K decreased from 3.6 to 1.2 mL/min/g, the MARE increased from 30% to 70% for the GF-NLS method. In contrast, both the DNLM-NLS (average: 42%) and the DL methods (average: 20%) demonstrated significantly smaller MARE changes as stress K varied. Regarding the regional mean bias (±standard deviation), the GF-NLS method had a bias of 6.30% (±8.35%) of rest K, compared to 1.10% (±8.21%) for DNLM-NLS and 6.28% (±14.05%) for the DL method. For the stress K, the GF-NLS showed a mean bias of 10.72% (±9.34%) compared to 1.69% (±8.82%) for DNLM-NLS and -10.55% (±9.81%) for the DL method.
This study showed that an increase in the tracer uptake rate (K) corresponded to improved accuracy and precision in MBF quantification, whereas lower tracer uptake resulted in higher noise in dynamic PET and poorer parameter estimates. Utilizing denoising techniques or DL approaches can mitigate noise-induced bias in PET parametric imaging.
心脏灌注正电子发射断层扫描(PET)常用于评估缺血情况和心血管风险,它能够通过动力学建模对心肌血流量(MBF)进行定量测量。然而,由于短动态帧的噪声特性和有限的样本数据点,动力学参数的估计具有挑战性。
本研究旨在通过模拟研究调查PET中MBF估计的误差,并评估不同的参数估计方法,包括深度学习(DL)方法。
使用基于55例临床CT图像心脏分割的数字体模生成模拟研究。我们采用不可逆的双组织隔室模型,并在静息和负荷条件下模拟动态N-氨PET扫描(各220例)。模拟涵盖心肌中静息K值范围为0.6至1.2,负荷K值范围为1.2至3.6(单位:mL/min/g)。在模拟数据集上训练基于Transformer的DL模型,以从有噪声的PET图像帧预测参数图像(PIM),并使用五折交叉验证进行验证。我们将DL方法与应用于动态图像的体素级非线性最小二乘(NLS)拟合进行比较,后者使用高斯滤波器(GF)平滑(GF-NLS)或动态非局部均值(DNLM)算法进行去噪(DNLM-NLS)。纳入两名进行了冠状动脉CT血管造影(CTA)和血流储备分数(FFR)检查的患者,以测试在临床PET数据上应用DL模型的可行性。
与传统的基于NLS的方法相比,DL方法显示出图像结构更清晰,噪声更低。就平均绝对相对误差(MARE)而言,随着静息K值从0.6 mL/min/g增加到1.2 mL/min/g,基于NLS的方法在心肌K估计中的总体偏差从约58%降至45%,而DL方法的MARE从42%降至18%。对于负荷数据,随着负荷K从3.6 mL/min/g降至1.2 mL/min/g,GF-NLS方法的MARE从30%增加到70%。相比之下,DNLM-NLS(平均:42%)和DL方法(平均:20%)在负荷K变化时MARE变化明显更小。关于区域平均偏差(±标准差),GF-NLS方法在静息K时的偏差为6.30%(±8.35%),而DNLM-NLS为1.10%(±8.21%),DL方法为6.28%(±14.05)。对于负荷K,GF-NLS显示平均偏差为10.72%(±9.34%),而DNLM-NLS为1.69%(±8.82%),DL方法为-10.55%(±9.81%)。
本研究表明,示踪剂摄取率(K)的增加对应于MBF定量中更高的准确性和精度,而较低的示踪剂摄取导致动态PET中更高的噪声和更差的参数估计。利用去噪技术或DL方法可以减轻PET参数成像中噪声引起的偏差。