Zhang Yangning, Imran Muhammad, Xia Pan, Chen Yiqing, Gulsaran Ahmet, Liu Yanjiang, Nikbin Ehsan, Rehl Benjamin, Fan Lizhou, Dinic Filip, Kim Da Bin, Zeng Lewei, Yavuz Mustafa, Hoogland Sjoerd, Sargent Edward H
Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario, N2L 3G1, Canada.
Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202505179. doi: 10.1002/anie.202505179. Epub 2025 May 22.
Indium antimonide (InSb) colloidal quantum dots (CQDs) are promising candidates for short-wave infrared (SWIR) photodetectors due to their large Bohr exciton radius and tunable bandgap in the 0.6-1.3 eV range. However, the formation of metal oxides on InSb surfaces during synthesis impedes charge transport, necessitating CQD resurfacing strategies for integration into photodetectors. Previous reports achieved progress in device efficiency by resurfacing these CQDs with acid-halide sequential treatments, but the device operating stability remains unsatisfactory. Herein, we report a solution-phase strategy for surface reconstruction and passivation of InSb CQDs using sulfur-based nucleophilic covalent ligands. We find that short-chain thiol molecules remove surface metal oxides through nucleophilic attack and enable robust passivation of In and Sb via strong covalent bonds, whereas metal sulfides are less effective at oxide removal and passivation. Consequently, the thiolate-passivated CQDs exhibit a tenfold decrease in trap state density compared to controls and remain structurally and optically stable for 5 months. We demonstrate InSb CQD SWIR photodetectors that realize a high external quantum efficiency (EQE) of 28% at 1450 nm, with the highest operating stability among reported CQD SWIR photodetectors, retaining 95% of performance following 300 h of biased and illuminated operation.
锑化铟(InSb)胶体量子点(CQD)因其较大的玻尔激子半径和0.6 - 1.3电子伏特范围内可调的带隙,成为短波红外(SWIR)光电探测器的有前途的候选材料。然而,在合成过程中InSb表面形成金属氧化物会阻碍电荷传输,因此需要采用CQD表面改性策略以集成到光电探测器中。先前的报道通过用卤化酸顺序处理对这些CQD进行表面改性,在器件效率方面取得了进展,但器件的工作稳定性仍不尽人意。在此,我们报道了一种使用硫基亲核共价配体对InSb CQD进行表面重构和钝化的溶液相策略。我们发现短链硫醇分子通过亲核攻击去除表面金属氧化物,并通过强共价键对In和Sb进行有效钝化,而金属硫化物在去除氧化物和钝化方面效果较差。因此,与对照相比,硫醇盐钝化的CQD的陷阱态密度降低了十倍,并且在结构和光学上保持稳定达5个月。我们展示了InSb CQD SWIR光电探测器,其在1450纳米处实现了28%的高外部量子效率(EQE),在已报道的CQD SWIR光电探测器中具有最高的工作稳定性,在300小时的偏置和光照操作后仍保留95%的性能。