Suppr超能文献

基于模型的荟萃分析在指导阿尔茨海默病抗淀粉样蛋白β疗法早期临床试验设计中的应用。

Use of Model-Based Meta-Analysis to Inform the Design of Early Clinical Trials of Anti-Amyloid Beta Therapies in Alzheimer's Disease.

作者信息

Bachhav Sagar S, Ponce-Bobadilla Ana Victoria, Clausznitzer Diana, Stodtmann Sven, Xiong Hao

机构信息

Clinical Pharmacology, AbbVie Inc, North Chicago, Illinois, USA.

Clinical Pharmacology, AbbVie Deutschland GmbH Co. KG, Ludwigshafen am Rhein, Germany.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 Jul;14(7):1191-1200. doi: 10.1002/psp4.70038. Epub 2025 May 9.

Abstract

To inform an efficient development of new investigational anti-amyloid beta (anti-Aβ) monoclonal antibodies (mAbs), a modeling-and-simulation-based strategy was proposed. A general modeling framework that links drug exposures to the time course of amyloid plaque removal and amyloid-related imaging abnormalities characterized by edema and effusion (ARIA-E) was developed based on publicly available data on aducanumab, lecanemab, and donanemab. A non-linear mixed effect model with shared model parameters described the dose response data from aducanumab, lecanemab, and donanemab studies after adjusting for different potency for different antibodies, which allowed the rate of amyloid plaque removal to vary by drug. A time-to-event model was developed to describe ARIA-E incidence. The model assumes that ARIA-E incidence rate is dependent on the rate of amyloid plaque removal with a drug-dependent scaling factor linking amyloid plaque removal rate and treatment-dependent hazard. Simulations of amyloid plaque removal and ARIA-E for a hypothetical anti-Aβ mAb based on certain assumptions and scenarios provided insights into possible outcomes. Overall, the meta-analysis of published data on existing anti-Aβ mAbs could be utilized to model exposure-response relationships and the time course of amyloid plaque removal and ARIA-E incidence of new anti-Aβ mAbs and to inform the design of early clinical trials for them.

摘要

为指导新型抗淀粉样蛋白β(抗Aβ)单克隆抗体(mAb)的高效研发,提出了一种基于建模与模拟的策略。基于阿杜卡努单抗、乐卡努单抗和多纳努单抗的公开数据,开发了一个通用建模框架,该框架将药物暴露与淀粉样斑块清除的时间进程以及以水肿和渗出为特征的淀粉样蛋白相关影像学异常(ARIA-E)联系起来。一个具有共享模型参数的非线性混合效应模型描述了在调整不同抗体的不同效价后,阿杜卡努单抗、乐卡努单抗和多纳努单抗研究的剂量反应数据,这使得淀粉样斑块清除率因药物而异。开发了一个事件发生时间模型来描述ARIA-E的发生率。该模型假设ARIA-E发生率取决于淀粉样斑块清除率,并通过一个药物依赖的比例因子将淀粉样斑块清除率与治疗相关风险联系起来。基于某些假设和情景对一种假设的抗Aβ mAb的淀粉样斑块清除和ARIA-E进行模拟,为可能的结果提供了见解。总体而言,对现有抗Aβ mAb的已发表数据进行荟萃分析,可用于建立暴露-反应关系模型、淀粉样斑块清除的时间进程模型以及新型抗Aβ mAb的ARIA-E发生率模型,并为其早期临床试验设计提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验