Suppr超能文献

Argonaute在互补位点的靶标识别机制

Target Recognition Mechanism of Argonaute at the Supplementary Site.

作者信息

Xi Kun, Liu Jinchu, Ma Wenzhuo, Zhu Lizhe

机构信息

School of Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong - Shenzhen, Shenzhen, Guangdong 518172, P. R. China.

Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.

出版信息

Biochemistry. 2025 May 20;64(10):2181-2191. doi: 10.1021/acs.biochem.5c00056. Epub 2025 May 9.

Abstract

Argonaute (Ago) utilizes a guide DNA strand to cleave foreign DNA, defending the bacteria against invasive genetic elements and thus offering potential as a gene-editing tool. However, the underlying mechanism for target recognition remains underexplored. For example, the necessity of guide-target complementarity at the supplementary site (positions g13-16) for target cleavage has been debated for years. Here, using multiple transition pathways generated by atomistic molecular dynamics simulations, we identified three stages in this process: tail release, base pairing, and final refinement. The tail release leads to full exposure of the guide DNA (gDNA) to solvents, thereby positioning base-pairing between gDNA and target DNA (tDNA) as the principal force driving recognition. Consequently, all rate-determining steps are situated within the base-pairing stage. Detailed examination indicates that π-π stacking between the nucleobases, the extrusion of bases, and mismatches significantly influence these rate-limiting stages. Our results also suggest that base dislocations are less disruptive factors than π-π stacking for tDNA recognition in the supplementary site.

摘要

Argonaute(Ago)利用一条引导DNA链切割外源DNA,保护细菌免受入侵遗传元件的影响,因此具有作为基因编辑工具的潜力。然而,目标识别的潜在机制仍未得到充分探索。例如,多年来,对于在辅助位点(位置g13 - 16)处引导序列与目标序列互补性对于目标切割的必要性一直存在争议。在这里,我们利用原子分子动力学模拟生成的多个过渡途径,确定了这个过程中的三个阶段:尾部释放、碱基配对和最终优化。尾部释放导致引导DNA(gDNA)完全暴露于溶剂中,从而使gDNA与目标DNA(tDNA)之间的碱基配对成为驱动识别的主要力量。因此,所有速率决定步骤都位于碱基配对阶段。详细研究表明,核碱基之间的π-π堆积、碱基的挤出以及错配显著影响这些限速阶段。我们的结果还表明,对于辅助位点中tDNA的识别,碱基错位比π-π堆积的干扰因素要小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验