Suppr超能文献

评估并验证机器学习增强的脊髓损伤患者入院时美国脊髓损伤协会损伤分级量表评分的插补法

Assessing and validating machine learning-enhanced imputation of admission American Spinal Injury Association Impairment Scale grades for spinal cord injury.

作者信息

Jillala Ritvik R, Aude Carlos A, Vattipally Vikas N, Ran Kathleen R, Jiang Kelly, Weber-Levine Carly, Davidar A Daniel, Hersh Andrew M, Jo Jacob, Lubelski Daniel, Bydon Ali, Witham Timothy, Theodore Nicholas, Azad Tej D

出版信息

J Neurosurg Spine. 2025 May 9;43(1):90-97. doi: 10.3171/2025.1.SPINE241135. Print 2025 Jul 1.

Abstract

OBJECTIVE

The American Spinal Injury Association Impairment Scale (AIS) assigned at patient admission is an important predictor of outcomes following spinal cord injury (SCI). However, nearly 80% of records in the Spinal Cord Injury Model Systems (SCIMS) database-a multicenter prospective database of patients with SCI-lack admission AIS grades. Accurate imputation of this missing data could enable more robust analyses and insights into SCI recovery. This study aims to develop and validate methods for imputing missing admission AIS data in the SCIMS database.

METHODS

The study included 16,062 patients with SCI from the publicly available SCIMS database (1988-2020). Five machine learning algorithms-random forest (RF), linear discriminant analysis, K-nearest neighbors, naive Bayes, and support vector machine-were compared using performance metrics (accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and multiclass area under the receiver operating characteristic curve) using five-fold cross-validation on a training subset of 6054 patients with complete AIS admission grades. The model with the highest performance was trained on all 16,062 patients. The imputed AIS grades were validated by predicting discharge functional independence measure (FIM) scores (range 13-91) with simple and multiple linear regression models on a 1:1 propensity score-matched cohort (n = 5828). Model performance was compared using differences in root mean square error (∆RMSE) with bootstrapped 95% confidence intervals (CIs).

RESULTS

The full cohort contained a representative distribution of AIS grades (45% grade A, 13% grade B, 18% grade C, and 24% grade D), and the propensity score-matched cohort characteristics were well balanced. The RF algorithm demonstrated the highest validation accuracy (81.7%). Predictive models showed no significant differences between models using true versus imputed AIS grades, with 95% CIs for ∆RMSE of -0.60 to 0.47 for simple regression and -0.63 to 0.46 for multiple regression models. The coefficients of AIS grades also did not significantly differ between models with true versus imputed values.

CONCLUSIONS

A data-driven approach to imputation resulted in a robust method for imputing admission AIS grades that demonstrated clinical validity in the SCIMS database. This approach extends the utility of this longitudinal database and may provide a framework for other SCI databases.

摘要

目的

患者入院时所分配的美国脊髓损伤协会损伤分级(AIS)是脊髓损伤(SCI)后预后的重要预测指标。然而,在脊髓损伤模型系统(SCIMS)数据库(一个多中心前瞻性SCI患者数据库)中,近80%的记录缺少入院时的AIS分级。准确插补这些缺失数据能够进行更有力的分析,并深入了解SCI的恢复情况。本研究旨在开发并验证用于插补SCIMS数据库中缺失的入院AIS数据的方法。

方法

本研究纳入了来自公开的SCIMS数据库(1988 - 2020年)的16062例SCI患者。使用性能指标(准确性、敏感性、特异性、阳性预测值、阴性预测值和受试者工作特征曲线下的多分类面积),在6054例具有完整AIS入院分级的患者训练子集中采用五折交叉验证法,比较了五种机器学习算法——随机森林(RF)、线性判别分析、K近邻、朴素贝叶斯和支持向量机。在所有16062例患者上训练性能最高的模型。通过在1:1倾向评分匹配队列(n = 5828)中使用简单和多元线性回归模型预测出院时功能独立性测量(FIM)评分(范围13 - 91)来验证插补的AIS分级。使用均方根误差差异(∆RMSE)和自抽样95%置信区间(CI)比较模型性能。

结果

整个队列包含具有代表性的AIS分级分布(45%为A级,13%为B级,18%为C级,24%为D级),倾向评分匹配队列的特征得到了很好的平衡。RF算法显示出最高的验证准确性(81.7%)。预测模型在使用真实AIS分级与插补AIS分级的模型之间没有显著差异,简单回归模型的∆RMSE的95%CI为 - 还没有完成全部翻译,请稍等片刻。

(续上)-0.60至0.47,多元回归模型为 - 0.63至0.46。真实值与插补值模型之间AIS分级的系数也没有显著差异。

结论

一种数据驱动的插补方法产生了一种可靠的插补入院AIS分级的方法,该方法在SCIMS数据库中证明了临床有效性。这种方法扩展了这个纵向数据库的效用,并可能为其他SCI数据库提供一个框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验