Li Zhiyong, Chen Jianxiong, Fang Qiu, Fu Jialong, Ren Yi, Wang Xuefeng, Guo Xin
School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
Angew Chem Int Ed Engl. 2025 Jul;64(29):e202505509. doi: 10.1002/anie.202505509. Epub 2025 May 19.
The interfacial instability of Na metal anodes poses a significant barrier to the practical applications of sodium metal batteries. According to electric double layer (EDL) theory, the potential difference in the Helmholtz layer critically affects electrochemical reactions at the electrode/electrolyte interfaces, which governs the solid electrolyte interphase (SEI) composition and the Na deposition process. Herein, we leverage the electric dipole effect of polymers, formed via in situ polymerization of butyl acrylate (BA), which preferentially adsorbs on the Na metal surface, to modulate the conformation of the EDL. Molecular dynamics simulations reveal that poly-BA facilitates the formation of a more compressed diffuse layer and reduces the potential difference in the Helmholtz layer. This compressed EDL with the change of species derives homogeneous SEI, enabling reversible Na plating/stripping. As a result, the poly-BA quasi-solid electrolyte extends the lifespan of the Na||Na cell to 3500 h at 0.1 mA cm⁻. Quasi-solid-state Na||NaV(PO) cells maintain stable cycling over 1500 cycles, with a capacity retention of 87.6% at 5 C. Our findings indicate that modulating the EDL structure via the electric dipole effect of polymers enables uniform Na deposition, offering a promising strategy for designing electrolytes for practical quasi-solid-state sodium metal batteries.
钠金属负极的界面不稳定性对钠金属电池的实际应用构成了重大障碍。根据双电层(EDL)理论,亥姆霍兹层中的电势差对电极/电解质界面处的电化学反应有至关重要的影响,而这又决定了固体电解质界面(SEI)的组成和钠的沉积过程。在此,我们利用通过丙烯酸丁酯(BA)原位聚合形成的聚合物的电偶极效应,该聚合物优先吸附在钠金属表面,以调节双电层的构象。分子动力学模拟表明,聚BA有助于形成更压缩的扩散层,并减小亥姆霍兹层中的电势差。这种随着物种变化而压缩的双电层产生均匀的SEI,实现可逆的钠电镀/剥离。结果,聚BA准固态电解质在0.1 mA cm⁻²时将Na||Na电池的寿命延长至3500小时。准固态Na||NaV(PO)电池在1500次循环中保持稳定循环,在5 C时容量保持率为87.6%。我们的研究结果表明,通过聚合物的电偶极效应调节双电层结构能够实现均匀的钠沉积,为设计实用的准固态钠金属电池电解质提供了一种有前景的策略。