Suppr超能文献

颅骨骨细胞的顶端扩张和缝的开放取决于纤连蛋白的线索。

Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues.

机构信息

Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.

Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA.

出版信息

Development. 2024 Apr 1;151(7). doi: 10.1242/dev.202371. Epub 2024 Apr 11.

Abstract

The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.

摘要

颅骨由相互连接的骨板组成,这些骨板包裹着大脑。分隔这些骨骼的是允许生长的纤维性缝合线。目前,我们还不了解颅骨定向生长的指令,这个过程容易出错,可能导致骨骼缺陷或过早的缝合线融合(颅缝早闭,CS)。在这里,我们发现在小鼠胚胎颅间充质(CM)中存在纤维连接蛋白(FN1)的梯度表达,这先于颅骨的顶端扩张。条件性敲除 Fn1 或 Wasl 分别导致额骨扩张减少,这是通过改变细胞形状和局部肌动蛋白富集来实现的,表明颅骨祖细胞的迁移缺陷。有趣的是,Fn1 突变体的冠状缝合线过早融合。一致地,人类 CS 的综合征形式表现出 FN1 表达失调,我们还发现 Apert 综合征的小鼠 CS 模型中 FN1 表达改变。这些数据支持 FN1 作为颅骨成骨细胞迁移的定向基质的模型,这可能是许多具有不同遗传病因的颅面疾病的共同机制。

相似文献

1
Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues.
Development. 2024 Apr 1;151(7). doi: 10.1242/dev.202371. Epub 2024 Apr 11.
2
Apical expansion of calvarial osteoblasts and suture patency is dependent on graded fibronectin cues.
bioRxiv. 2023 Jan 16:2023.01.16.524278. doi: 10.1101/2023.01.16.524278.
4
The BMP antagonist noggin regulates cranial suture fusion.
Nature. 2003 Apr 10;422(6932):625-9. doi: 10.1038/nature01545.
6
Lamellipodia-Mediated Osteoblast Haptotaxis Guided by Fibronectin Ligand Concentrations on a Multiplex Chip.
Small. 2024 Dec;20(49):e2401717. doi: 10.1002/smll.202401717. Epub 2024 Sep 17.
7
Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures.
J Bone Miner Res. 2003 Apr;18(4):751-9. doi: 10.1359/jbmr.2003.18.4.751.
8
Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling.
Histol Histopathol. 2002;17(3):877-85. doi: 10.14670/HH-17.877.
10
Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion.
Development. 2024 Jun 15;151(12). doi: 10.1242/dev.202596. Epub 2024 Jun 17.

引用本文的文献

1
Self-propagating wave drives morphogenesis of skull bones in vivo.
Nat Commun. 2025 May 9;16(1):4330. doi: 10.1038/s41467-025-59164-9.
2
Lamellipodia-Mediated Osteoblast Haptotaxis Guided by Fibronectin Ligand Concentrations on a Multiplex Chip.
Small. 2024 Dec;20(49):e2401717. doi: 10.1002/smll.202401717. Epub 2024 Sep 17.
3
A novel perspective of calvarial development: the cranial morphogenesis and differentiation regulated by dura mater.
Front Cell Dev Biol. 2024 Jun 24;12:1420891. doi: 10.3389/fcell.2024.1420891. eCollection 2024.
4
Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion.
Development. 2024 Jun 15;151(12). doi: 10.1242/dev.202596. Epub 2024 Jun 17.

本文引用的文献

1
The mechanical forces that shape our senses.
Development. 2022 Apr 1;149(7). doi: 10.1242/dev.197947. Epub 2022 Mar 31.
2
A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images.
Front Comput Sci. 2021 Oct;3. doi: 10.3389/fcomp.2021.745831. Epub 2021 Oct 14.
3
Collective durotaxis along a self-generated stiffness gradient in vivo.
Nature. 2021 Dec;600(7890):690-694. doi: 10.1038/s41586-021-04210-x. Epub 2021 Dec 8.
4
Skin Fibrosis and Recovery Is Dependent on Wnt Activation via DPP4.
J Invest Dermatol. 2022 Jun;142(6):1597-1606.e9. doi: 10.1016/j.jid.2021.10.025. Epub 2021 Nov 20.
5
A simple method for quantitating confocal fluorescent images.
Biochem Biophys Rep. 2021 Feb 1;25:100916. doi: 10.1016/j.bbrep.2021.100916. eCollection 2021 Mar.
6
Latent developmental potential to form limb-like skeletal structures in zebrafish.
Cell. 2021 Feb 18;184(4):899-911.e13. doi: 10.1016/j.cell.2021.01.003. Epub 2021 Feb 4.
7
Durotaxis: The Hard Path from In Vitro to In Vivo.
Dev Cell. 2021 Jan 25;56(2):227-239. doi: 10.1016/j.devcel.2020.11.019. Epub 2020 Dec 7.
8
9
Rules of collective migration: from the wildebeest to the neural crest.
Philos Trans R Soc Lond B Biol Sci. 2020 Sep 14;375(1807):20190387. doi: 10.1098/rstb.2019.0387. Epub 2020 Jul 27.
10
The extracellular matrix in development.
Development. 2020 May 28;147(10):dev175596. doi: 10.1242/dev.175596.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验