Suppr超能文献

利用神经网络在在线教育早期阶段进行准确的多类别学生成绩预测。

Accurate multi-category student performance forecasting at early stages of online education using neural networks.

作者信息

Junejo Naveed Ur Rehman, Nawaz Muhammad Wasim, Huang Qingsheng, Dong Xiaoqing, Wang Chang, Zheng Gengzhong

机构信息

School of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China.

Department of Computer Science and Engineering, Hanshan Normal University, Chaozhou, 521041, China.

出版信息

Sci Rep. 2025 May 9;15(1):16251. doi: 10.1038/s41598-025-00256-3.

Abstract

The ability to accurately predict and analyze student performance in online education, both at the outset and throughout the semester, is vital. Most of the published studies focus on binary classification (Fail or Pass) but there is still a significant research shortcoming in predicting performance of students across multiple categories. This study introduces a novel neural network-based approach capable of accurately predicting student performance and identifying vulnerable students at early stages of the online courses. The open university learning analytics (OULA) dataset is employed to develop and test the proposed model, which predicts outcomes in Distinction, Fail, Pass, and Withdrawn categories. The OULA dataset is preprocessed to extract features from demographic data, assessment data, and clickstream interactions within a virtual learning environment (VLE). Novel features engineering has been utilized to predict students' performance across multiple categories at early stages of courses. Specially, students' VLE interactions are aggregated by total clicks to represent daily engagement and assess online activity. Comparative simulations indicate that the proposed model significantly outperforms existing baseline models including artificial neural network long short-term memory (ANN-LSTM), random forest (RF) 'gini', RF 'entropy' and deep feed forward neural network (DFFNN) in terms of accuracy, precision, recall, and F1-score. The results indicate that the prediction accuracy of the proposed method is about [Formula: see text] more than the existing state-of-the-art methods. Furthermore, compared to existing methodologies, the model demonstrates superior predictive capability across temporal course progression, achieving superior accuracy even at the initial [Formula: see text] phase of course completion.

摘要

在在线教育开始时以及整个学期中,准确预测和分析学生表现的能力至关重要。大多数已发表的研究集中在二元分类(及格或不及格)上,但在预测多类别学生的表现方面仍存在重大研究缺陷。本研究引入了一种基于新型神经网络的方法,能够准确预测学生表现并在在线课程的早期阶段识别出易受影响的学生。使用开放大学学习分析(OULA)数据集来开发和测试所提出的模型,该模型可预测优秀、不及格、及格和退学类别的结果。对OULA数据集进行预处理,以从虚拟学习环境(VLE)中的人口统计数据、评估数据和点击流交互中提取特征。利用新颖的特征工程来预测课程早期阶段多类别的学生表现。具体而言,学生在VLE中的交互通过总点击量进行汇总,以代表日常参与度并评估在线活动。比较模拟表明,所提出的模型在准确性、精确性、召回率和F1分数方面显著优于现有的基线模型,包括人工神经网络长短期记忆(ANN-LSTM)、随机森林(RF)“基尼”、RF“熵”和深度前馈神经网络(DFFNN)。结果表明,所提出方法的预测准确率比现有的最先进方法高出约[公式:见原文]。此外,与现有方法相比,该模型在课程的时间进程中表现出卓越的预测能力,即使在课程完成的初始[公式:见原文]阶段也能实现更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12064807/35ceda8e0561/41598_2025_256_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验