Kanai Yuki, Shibai Atsushi, Yokoi Naomi, Tsuru Saburo, Furusawa Chikara
Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Japan.
Center for Biosystems Dynamics Research, RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, 650-0047 Kobe, Japan.
Nucleic Acids Res. 2025 May 10;53(9). doi: 10.1093/nar/gkaf331.
The genome structure fundamentally shapes bacterial physiology, ecology, and evolution. Though insertion sequences (IS) are known drivers of drastic evolutionary changes in the genome structure, the process is typically slow and challenging to observe in the laboratory. Here, we developed a system to accelerate IS-mediated genome structure evolution by introducing multiple copies of a high-activity IS in Escherichia coli. We evolved the bacteria under relaxed neutral conditions, simulating those leading to IS expansion in host-restricted endosymbionts and pathogens. Strains accumulated a median of 24.5 IS insertions and underwent over 5% genome size changes within ten weeks, comparable to decades-long evolution in wild-type strains. The detected interplay of frequent small deletions and rare large duplications updates the view of genome reduction under relaxed selection from a simple consequence of the deletion bias to a nuanced picture including transient expansions. The high IS activity resulted in structural variants of IS and the emergence of composite transposons, illuminating potential evolutionary pathways for ISs and composite transposons. The extensive genome rearrangements we observed establish a baseline for assessing the fitness effects of IS insertions, genome size changes, and rearrangements, advancing our understanding of how mobile elements shape bacterial genomes.
基因组结构从根本上塑造了细菌的生理学、生态学和进化。虽然插入序列(IS)是基因组结构中剧烈进化变化的已知驱动因素,但这一过程通常很缓慢,且在实验室中难以观察到。在此,我们开发了一个系统,通过在大肠杆菌中引入多个高活性IS拷贝来加速IS介导的基因组结构进化。我们在宽松的中性条件下培养细菌,模拟那些导致宿主受限的内共生体和病原体中IS扩张的条件。菌株在十周内平均积累了24.5个IS插入,并经历了超过5%的基因组大小变化,这与野生型菌株数十年的进化相当。检测到的频繁小缺失和罕见大重复之间的相互作用,将宽松选择下基因组缩减的观点从缺失偏向的简单结果更新为包括瞬时扩张的细致图景。高IS活性导致了IS的结构变异和复合转座子的出现,揭示了IS和复合转座子潜在的进化途径。我们观察到的广泛基因组重排为评估IS插入、基因组大小变化和重排的适应性效应建立了一个基线,增进了我们对移动元件如何塑造细菌基因组的理解。