Kjällquist Una, Tsiknakis Nikos, Acs Balazs, Margolin Sara, Kessler Luisa Edman, Levy Scarlett, Ekholm Maria, Lundgren Christine, Olsson Erik, Lindman Henrik, Valachis Antonios, Hartman Johan, Foukakis Theodoros, Matikas Alexios
Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden.
Breast. 2025 May 7;82:104489. doi: 10.1016/j.breast.2025.104489.
Gene expression profiles are used for decision making in the adjuvant setting in hormone receptor-positive, HER2-negative (HR+/HER2-) breast cancer. While algorithms to optimize testing exist for RS/Oncotype Dx, no such efforts have focused on ROR/Prosigna. This study aims to enhance pre-selection of patients for testing using machine learning.
We included 348 postmenopausal women with resected HR+/HER2-node-negative breast cancer tested with ROR/Prosigna across four Swedish regions. We developed a machine learning model using simple prognostic factors (size, progesterone receptor expression, grade, and Ki67) to predict ROR/Prosigna output and compared the performance regarding over- and undertreatment with commonly employed risk stratification schemes.
Previous classifications resulted in significant undertreatment or large intermediate groups needing gene expression profiling. The machine learning model achieved AUC under ROC of 0.77 in training and 0.83 in validation cohorts for prediction of indication for adjuvant chemotherapy according to ROR/Prosigna. By setting and validating upper and lower cut-offs corresponding to low, intermediate and high-risk disease, we improved risk stratification accuracy and reduced the proportion of patients needing ROR/Prosigna testing compared to current risk stratification.
Machine learning algorithms can enhance patient selection for gene expression profiling, though further external validation is needed.
基因表达谱用于激素受体阳性、人表皮生长因子受体2阴性(HR+/HER2-)乳腺癌辅助治疗的决策制定。虽然存在优化检测的算法用于RS/Oncotype Dx,但尚未有针对ROR/Prosigna的此类研究。本研究旨在利用机器学习加强检测患者的预筛选。
我们纳入了348名绝经后接受ROR/Prosigna检测的HR+/HER2-淋巴结阴性乳腺癌切除术患者,这些患者来自瑞典的四个地区。我们使用简单的预后因素(肿瘤大小、孕激素受体表达、分级和Ki67)开发了一个机器学习模型来预测ROR/Prosigna结果,并将其与常用风险分层方案在过度治疗和治疗不足方面的表现进行比较。
既往分类导致显著的治疗不足或大量需要基因表达谱分析的中间组。根据ROR/Prosigna预测辅助化疗指征,该机器学习模型在训练队列中的ROC曲线下面积(AUC)为0.77,在验证队列中为0.83。通过设定和验证对应低、中、高风险疾病的上下界值,我们提高了风险分层的准确性,并与当前风险分层相比,减少了需要进行ROR/Prosigna检测的患者比例。
机器学习算法可加强基因表达谱分析的患者选择,不过仍需进一步的外部验证。