Hu Jiayue, Islam Md Mohaiminul, He Jinlong, Zhang Lin, Liu Ling
Department of Mechanical Engineering, Temple University, 1801 N Broad Street, Philadelphia, PA, 19122, USA.
Failure Mechanics and Engineering Disaster Prevention Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610207, PR China; MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
Acta Biomater. 2025 Jun 15;200:390-399. doi: 10.1016/j.actbio.2025.05.020. Epub 2025 May 8.
Fibrous proteins are widely used as materials due to their biocompatibility, flexibility, and mechanical properties. With advancements in bioelectronics and flexible materials, there is increasing demand for biocompatible materials with tunable thermal conductivity. Understanding the mechanisms of thermal transport in proteins can facilitate the design of biomaterials with tailored thermal properties. In this study, we use non-equilibrium molecular dynamics (NEMD) to investigate how side-chain mass affects thermal transport in α-helix proteins. We analyze four representative residues - glycine (G), alanine (A), leucine (L), and phenylalanine (F) - and demonstrate that variations in side-chain mass significantly influence thermal conductivity. Results show that heavier side chains hinder heat transport, while lighter side chains enhance it. Phonon analysis reveals that side-chain mass primarily affects the properties of low-frequency acoustic and semi-optical phonons, which are critical for energy transfer. These findings provide insights into the design of protein-based biomaterials with customized thermal properties, offering potential applications in bioelectronics, medical devices, and sustainable materials. STATEMENT OF SIGNIFICANCE: This research explores how side chains in α-helix proteins influence their thermal conductivity through the application of molecular dynamics simulations. By analyzing four types of amino acids with differing side-chain masses, the study demonstrates that lighter side chains enhance heat transport, whereas heavier ones diminish it. This work establishes a direct correlation between protein structural features and their thermal properties, providing the groundwork that could enable the engineering of biomaterials with tailored heat conduction capabilities. The findings have implications for applications in bioelectronics, medical devices, and sustainable materials, where precise thermal management is essential, rendering this research highly relevant to scientists and engineers focused on advancing biocompatible materials with specific thermal characteristics.
由于其生物相容性、柔韧性和机械性能,纤维蛋白被广泛用作材料。随着生物电子学和柔性材料的发展,对具有可调热导率的生物相容性材料的需求日益增加。了解蛋白质中的热传输机制有助于设计具有定制热性能的生物材料。在本研究中,我们使用非平衡分子动力学(NEMD)来研究侧链质量如何影响α-螺旋蛋白中的热传输。我们分析了四个具有代表性的残基——甘氨酸(G)、丙氨酸(A)、亮氨酸(L)和苯丙氨酸(F),并证明侧链质量的变化会显著影响热导率。结果表明,较重的侧链阻碍热传输,而较轻的侧链则增强热传输。声子分析表明,侧链质量主要影响低频声学声子和半光学声子的性质,而这些声子对能量转移至关重要。这些发现为设计具有定制热性能的基于蛋白质的生物材料提供了见解,在生物电子学、医疗设备和可持续材料方面具有潜在应用。重要性声明:本研究通过分子动力学模拟探索了α-螺旋蛋白中的侧链如何影响其热导率。通过分析四种具有不同侧链质量的氨基酸,该研究表明较轻的侧链增强热传输,而较重的侧链则降低热传输。这项工作建立了蛋白质结构特征与其热性能之间的直接关联,为设计具有定制热传导能力的生物材料奠定了基础。这些发现对生物电子学、医疗设备和可持续材料的应用具有启示意义,在这些领域精确的热管理至关重要,这使得本研究与专注于推进具有特定热特性的生物相容性材料的科学家和工程师高度相关。