Suppr超能文献

基于可解释机器学习方法探究慢性肾脏病(CKD)和非CKD患者腹主动脉钙化事件的影响因素。

Exploring the influencing factors of abdominal aortic calcification events in chronic kidney disease (CKD) and non-CKD patients based on interpretable machine learning methods.

作者信息

Lin Haowen, Dong Xiaoying, Yin Yuhe, Gao Qingqing, Peng Siqi, Zhao Zewen, Li Sijia, Huang Renwei, Tao Yiming, Wen Sichun, Li Bohou, Wu Qiong, Lin Ting, Dai Hao, Wen Feng, Li Zhuo, Xu Lixia, Ma Jianchao, Feng Zhonglin, Liu Shuangxin

机构信息

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, 510000, China.

School of Medicine South, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), China University of Technology, Southern Medical University, Guangdong, 510000, China.

出版信息

Int Urol Nephrol. 2025 May 11. doi: 10.1007/s11255-025-04564-5.

Abstract

BACKGROUND

Calcification is prevalent in CKD patients, with abdominal aortic calcification (AAC) being a strong predictor of coronary calcification. We aimed to identify key calcification factors in CKD and non-CKD populations using machine learning models.

METHODS

Data from the National Health and Nutrition Examination Survey (NHANES), including demographics, blood and urine tests, and AAC scores, were analyzed using machine learning models. The Shapley additive explanations (SHAP) analysis was applied to interpret the models.

RESULTS

Among 505 CKD and 2,582 non-CKD participants, common key factors for calcification included age, estimated glomerular filtration rate (eGFR), smoking history, blood glucose levels (Glu), CaP and the urine albumin-to-creatinine ratio (UACR). Age, smoking history and eGFR were the top-ranking features in the model for both two groups. Inflammatory markers such as monocyte-to-lymphocyte ratio (MHR), monocyte-to-high-density lipoprotein ratio (MLR) and neutrophil-to-lymphocyte ratio (NLR) were more significant in CKD group. Trigger points for AAC events were identified: in CKD, eGFR of 90 mL/min/1.73 m, MHR values of 0.5 and 0.75, MLR values of 0.25, and SP of 120 mmHg; in non-CKD, eGFR of 105 mL/min/1.73 m, CaP values of 40, UACR values of 10, and TG of 200 mg/dL.

CONCLUSIONS

Regardless of CKD status, age, smoking history, and eGFR are key determinants of calcification. In the CKD population, inflammatory markers are more significant than in the non-CKD group.

摘要

背景

钙化在慢性肾脏病(CKD)患者中很常见,腹主动脉钙化(AAC)是冠状动脉钙化的有力预测指标。我们旨在使用机器学习模型识别CKD和非CKD人群中的关键钙化因素。

方法

使用机器学习模型分析来自美国国家健康与营养检查调查(NHANES)的数据,包括人口统计学、血液和尿液检测以及AAC评分。应用Shapley加性解释(SHAP)分析来解释模型。

结果

在505名CKD参与者和2582名非CKD参与者中,钙化的常见关键因素包括年龄、估计肾小球滤过率(eGFR)、吸烟史、血糖水平(Glu)、钙磷乘积(CaP)和尿白蛋白与肌酐比值(UACR)。年龄、吸烟史和eGFR是两组模型中排名靠前的特征。炎症标志物如单核细胞与淋巴细胞比值(MHR)、单核细胞与高密度脂蛋白比值(MLR)和中性粒细胞与淋巴细胞比值(NLR)在CKD组中更显著。确定了AAC事件的触发点:在CKD中,eGFR为90 mL/min/1.73 m²、MHR值为0.5和0.75、MLR值为0.25以及收缩压(SP)为120 mmHg;在非CKD中,eGFR为105 mL/min/1.73 m²、CaP值为40、UACR值为10以及甘油三酯(TG)为200 mg/dL。

结论

无论CKD状态如何,年龄、吸烟史和eGFR都是钙化的关键决定因素。在CKD人群中,炎症标志物比非CKD组更显著。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验