Suppr超能文献

超越MRI解读腰椎间盘突出症的严重程度:整合转录组学和代谢组学分析突出甘油磷脂代谢并为机器学习诊断模型提供信息:一项初步研究

Unravelling lumbar disc herniation severity beyond MRI : integrated transcriptomic and metabolomic analyses highlight glycerophospholipid metabolism and inform a machine-learning diagnostic model: a pilot study.

作者信息

Deng Qiaosong, Ren Shiqi, Zhang Nan, Li Guanshen, Yu Ziwei, Li Xiaojun, Cui Hengyan, Zhang Yimin, Zhang Yafeng, Chen Jianfeng

机构信息

Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.

Department of Hand Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.

出版信息

Bone Joint Res. 2025 May 12;14(5):434-447. doi: 10.1302/2046-3758.145.BJR-2024-0071.R1.

Abstract

AIMS

While MRI serves as a tool for assessing the severity of lumbar disc herniation (LDH), it has been observed that imaging diagnoses do not always align with clinical symptoms in nearly half of patients. The absence of dependable prognostic biomarkers impedes the early and accurate diagnosis of LDH, which is critical for the development of further treatment approaches. Thus, the aim of this study was to elucidate the molecular mechanisms that determine pain and LDH severity.

METHODS

We conducted a pilot study with 55 patients, employing transcriptomic and metabolomic analyses on blood samples to identify potential biomarkers. A gene-metabolite interaction approach helped in identifying the pivotal pathway linked to disease severity. Moreover, a machine-learning model was designed to differentiate between patients based on the intensity of pain.

RESULTS

Cholinergic-related glycerophospholipid metabolism emerged as the predominant enriched pathway in the severe symptom group via gene-metabolite interaction network analysis. Among various models, the gradient boosting machines (GBM) model stood out, achieving a commendable area under the curve (AUC) of 0.875 in distinguishing between the severe and mild symptom groups using combined RNA and metabolomics data.

CONCLUSION

Integrated molecular profiling of blood biomarkers has highlighted a novel determining pathway for LDH severity. This machine-learning approach can serve as a valuable predictive tool when MRI findings are inconclusive. Future research will focus on validating these biomarkers and exploring their potential for personalized medicine approaches.

摘要

目的

虽然磁共振成像(MRI)是评估腰椎间盘突出症(LDH)严重程度的一种工具,但据观察,在近一半的患者中,影像学诊断并不总是与临床症状相符。缺乏可靠的预后生物标志物阻碍了LDH的早期准确诊断,而这对于进一步治疗方法的开发至关重要。因此,本研究的目的是阐明决定疼痛和LDH严重程度的分子机制。

方法

我们对55名患者进行了一项初步研究,对血液样本进行转录组学和代谢组学分析以识别潜在的生物标志物。基因-代谢物相互作用方法有助于识别与疾病严重程度相关的关键途径。此外,设计了一种机器学习模型,根据疼痛强度对患者进行区分。

结果

通过基因-代谢物相互作用网络分析,胆碱能相关甘油磷脂代谢在严重症状组中成为主要的富集途径。在各种模型中,梯度提升机(GBM)模型表现突出,使用RNA和代谢组学数据组合区分严重和轻度症状组时,曲线下面积(AUC)达到了可观的0.875。

结论

血液生物标志物的综合分子分析突出了一种用于LDH严重程度的新型决定途径。当MRI结果不明确时,这种机器学习方法可作为一种有价值的预测工具。未来的研究将集中于验证这些生物标志物,并探索它们在个性化医疗方法中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/12066174/714a56e04214/BJR-2024-0071.R1-galleyfig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验