Suppr超能文献

子痫前期严重不良孕产妇结局的风险预测因素:一项系统评价和荟萃分析方案

Risk predictors of severe adverse maternal outcomes in pre-eclampsia: a systematic review and meta-analysis protocol.

作者信息

Dasari Harika, Hammache Meriem, Deveaux-Cattino Bérengère, Foroutan Farid, Hales Lindsay, Bourgeois Sophia, Keepanasseril Anish, Nerenberg Kara, Grandi Sonia M, D'Souza Rohan, Daskalopoulou Stella S, Malhamé Isabelle

机构信息

Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.

Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.

出版信息

BMJ Open. 2025 May 11;15(5):e094550. doi: 10.1136/bmjopen-2024-094550.

Abstract

INTRODUCTION

Pre-eclampsia (PE) remains a major contributor to maternal morbidity and mortality globally. Early identification of risk factors and evaluation of prognostic models for severe adverse maternal outcomes are essential for improving management and reducing complications. While numerous studies have explored potential risk markers, there is still no consensus on the most reliable factors and models to use in clinical practice. This systematic review aims to consolidate research on both individual predictors and prognostic models of severe adverse maternal outcomes in PE, providing a comprehensive overview to support better clinical decision-making and patient care.

METHODS AND ANALYSIS

This review follows the Meta-analyses Of Observational Studies in Epidemiology (MOOSE) guidelines and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Protocol 2015 checklist. A systematic search will be performed using a detailed strategy across Medline, Embase, Cochrane, ProQuest dissertations, and grey literature from inception to 2 April 2024. Eligible studies will include those investigating clinical, laboratory-based, and sociodemographic predictors of severe adverse maternal outcomes in PE. Two reviewers will independently assess titles, abstracts, full texts, and extract data and assess study quality using the Quality In Prognostic Studies (QUIPS) tool for studies on risk predictors and the Prediction model Risk of Bias Assessment Tool (PROBAST) for prognostic models. The inclusion criteria will encompass cohort, case-control, and cross-sectional studies published in English and French involving women diagnosed with PE and reporting on the risk prediction for adverse maternal outcomes. The main outcomes of interest will include severe maternal morbidity and mortality during pregnancy, delivery, or within the postpartum period. Analyses will include both narrative synthesis and, where appropriate, meta-analysis using random-effects models. Pooled estimates will be calculated, with publication bias assessed through funnel plots and statistical tests (eg, Begg's and Egger's). Heterogeneity will be primarily assessed through visual inspection of forest plots, supported by statistical measures, such as the I² test, with further exploration through sensitivity, subgroup, and meta-regression analyses.

ETHICS AND DISSEMINATION

This systematic review will be based on published data and will not require ethics approval. Results will be disseminated through peer-reviewed publications and presentations at academic conferences.

PROSPERO REGISTRATION NUMBER

CRD42024517097.

摘要

引言

子痫前期(PE)仍是全球孕产妇发病和死亡的主要原因。早期识别危险因素并评估严重不良孕产妇结局的预后模型对于改善管理和减少并发症至关重要。虽然众多研究探索了潜在的风险标志物,但对于临床实践中使用的最可靠因素和模型仍未达成共识。本系统评价旨在整合关于PE中严重不良孕产妇结局的个体预测因素和预后模型的研究,提供全面概述以支持更好的临床决策和患者护理。

方法与分析

本评价遵循流行病学观察性研究的Meta分析(MOOSE)指南以及系统评价和Meta分析的首选报告项目(PRISMA)2015清单。将使用详细策略在Medline、Embase、Cochrane、ProQuest学位论文以及截至2024年4月2日的灰色文献中进行系统检索。符合条件的研究将包括那些调查PE中严重不良孕产妇结局的临床、基于实验室和社会人口学预测因素的研究。两名评审员将独立评估标题、摘要、全文,提取数据,并使用用于风险预测因素研究的预后研究质量(QUIPS)工具和用于预后模型的预测模型偏倚风险评估工具(PROBAST)评估研究质量。纳入标准将包括以英文和法文发表的队列研究、病例对照研究和横断面研究,涉及被诊断为PE的女性并报告不良孕产妇结局的风险预测。感兴趣的主要结局将包括妊娠、分娩期间或产后严重孕产妇发病和死亡。分析将包括叙述性综合,并在适当情况下使用随机效应模型进行Meta分析。将计算合并估计值,通过漏斗图和统计检验(如Begg检验和Egger检验)评估发表偏倚。异质性将主要通过森林图的目视检查进行评估,并辅以统计量度,如I²检验,并通过敏感性、亚组和Meta回归分析进行进一步探索。

伦理与传播

本系统评价将基于已发表的数据,无需伦理批准。结果将通过同行评审出版物和在学术会议上的报告进行传播。

PROSPERO注册号:CRD42024517097。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验