Suppr超能文献

单个沙粒上的微环境会加剧沿海沉积物中的氮流失。

Microenvironments on individual sand grains enhance nitrogen loss in coastal sediments.

作者信息

Jalaluddin Farooq Moin, Ahmerkamp Soeren, Marchant Hannah K, Meyer Volker, Koren Klaus, Kuypers Marcel M M

机构信息

Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.

Leibniz Institute for Baltic Sea Research Warnemünde, 18119, Rostock, Germany.

出版信息

Sci Rep. 2025 May 11;15(1):16384. doi: 10.1038/s41598-025-00755-3.

Abstract

The permeable silicate sediments which cover more than 50% of the continental shelves are a major, but poorly constrained sink for the vast amount of anthropogenic nitrogen (N) that enters the ocean. Surface-attached microbial communities on sand grains remove fixed-N via denitrification, a process generally restricted to anoxic or low oxygen (O) environments. Yet, in sands, denitrification also occurs in the centimeters thick well-oxygenated surface layer, which leads to additional and substantial N-loss. So far however, the underlying mechanisms that drive denitrification in oxic sands are poorly resolved. In this study, we applied a non-invasive microfluidic technique to visualize and quantify how sediment-attached microorganisms shape O availability on the surface of silicate sand grains. This revealed a remarkable heterogeneity in rates; with colonies of O consuming and producing microorganisms situated within micrometers of each other. Using a mechanistic approach to model respiration on the surface of a single silicate sand grain we showed that the high rates of O consumption within the microbial colonies on the sand-grain surface outpace O supply from the surrounding pore water. As a result anoxic microenvironments develop on the sand grain surface, which so far have been invisible to conventional techniques. The model results indicate that anaerobic denitrification occurring in these anoxic microenvironments can account for up to 74% of denitrification in oxygenated sands, with the remainder occurring in the presence of oxygen. In a preliminary upscaling approach, using a global dataset we estimated that anoxic microenvironments in oxygenated surface layers could be responsible for up to a third of the total N-loss that occurs in silicate shelf sands. Consequently, denitrification in anoxic microenvironments drives substantial anthropogenic-N removal from continental silicate shelf sands.

摘要

覆盖超过50%大陆架的渗透性硅酸盐沉积物是进入海洋的大量人为氮的一个主要但限制因素不明的汇。沙粒表面附着的微生物群落通过反硝化作用去除固定氮,这一过程通常局限于缺氧或低氧环境。然而,在沙子中,反硝化作用也发生在厘米厚的富氧表层,这导致了额外且大量的氮损失。然而,到目前为止,驱动有氧沙子中反硝化作用的潜在机制尚未得到很好的解析。在本研究中,我们应用了一种非侵入性微流体技术来可视化和量化沉积物附着微生物如何塑造硅酸盐沙粒表面的氧可用性。这揭示了速率上的显著异质性;耗氧和产氧微生物群落彼此相距仅几微米。通过一种机械方法对单个硅酸盐沙粒表面的呼吸作用进行建模,我们发现沙粒表面微生物群落内的高耗氧速率超过了周围孔隙水的氧供应。结果,沙粒表面形成了缺氧微环境,而这些微环境到目前为止传统技术还无法检测到。模型结果表明,这些缺氧微环境中发生的厌氧反硝化作用可占有氧沙子中反硝化作用的74%,其余部分则在有氧条件下发生。在一种初步的尺度放大方法中,我们使用全球数据集估计,富氧表层中的缺氧微环境可能导致硅酸盐陆架沙中总氮损失的三分之一。因此,缺氧微环境中的反硝化作用促使大陆硅酸盐陆架沙中大量人为氮的去除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcab/12066709/4387756d7782/41598_2025_755_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验