Su Chengxuan, Jin Donghai, Liu Guangmao, Li Shulei, Gui Xingmin
School of Energy and Power Engineering, Beihang University, Beijing, China.
Fuwai Hospital State Key Laboratory of Cardiovascular Disease, Beijing, China.
Front Physiol. 2025 Apr 25;16:1575971. doi: 10.3389/fphys.2025.1575971. eCollection 2025.
Constant-speed methods are widely applied and studied in rotary blood pumps. However, various speed modulation which have been used in commercial blood pump lacks validation of the ventricular assist capability and hemolysis potential.
This study investigates the hydrodynamic performance and hemolysis of a rotary ventricular assist device under sinusoidal speed modulation, focusing on the combined effects of phase, baseline speed, and speed fluctuation amplitude.
Computational fluid dynamics (CFD) coupled with a dynamic cardiovascular model revealed that counter-phase modulation reduces hemolysis index (HI) fluctuations compared to in-phase conditions, while higher baseline speeds increase time-averaged HI due to prolonged exposure to non-physiological shear stress. Larger amplitudes expand the operational range but exacerbate HI variability.
These findings demonstrate that phase synchronization critically balances pulsatility and hemocompatibility, providing actionable insights for adaptive speed control strategies in clinical practice.
恒速方法在旋转血泵中得到广泛应用和研究。然而,商业血泵中使用的各种速度调制缺乏对心室辅助能力和溶血潜力的验证。
本研究调查了旋转心室辅助装置在正弦速度调制下的流体动力学性能和溶血情况,重点关注相位、基线速度和速度波动幅度的综合影响。
计算流体动力学(CFD)与动态心血管模型相结合表明,与同相条件相比,反相调制可降低溶血指数(HI)波动,而较高的基线速度由于长时间暴露于非生理性剪切应力会增加时间平均HI。较大的幅度扩大了操作范围,但加剧了HI的变异性。
这些发现表明,相位同步对搏动性和血液相容性起着关键的平衡作用,为临床实践中的自适应速度控制策略提供了可操作的见解。