White R D, Yousefian O, Alexanderian A, Muller M
dept. of Mathematics North Carolina State University, Raleigh, United States.
dept. of Mechanical and Aerospace Engineering North Carolina State University, Raleigh, United States.
IEEE Int Ultrason Symp. 2020 Sep;2020. doi: 10.1109/ius46767.2020.9251388. Epub 2020 Nov 17.
The goal of this work is to quantify the porosity of cortical bone using non-invasive ultrasound attenuation. We do so by formulating a polydisperse version of the Independent Scattering Approximation (ISA) to mathematically model ultrasonic attenuation in cortical bone that is dependent upon the distributed parameter, pore radius. We use analytical Beta distributions to represent two cases of underlying microstructure: one with a relatively low expected value on pore radius, the other with a relatively high value. We simulate data for these cases by inputting the corresponding Beta density functions into a higher-order attenuation model and adding noise. With the polydisperse model and noisy attenuation data, we formulate and solve inverse problems using the Prohorov Metric Framework to reconstruct the input Beta density functions using piecewise linear splines. Furthermore, we use a regularization term to stabilize the inverse problem. We establish that the polydisperse ISA model and inverse problem formulation allow us to reconstruct the true probability density functions on pore radius for cases where the underlying microstructure varies.
这项工作的目标是使用非侵入性超声衰减来量化皮质骨的孔隙率。我们通过制定独立散射近似(ISA)的多分散版本来实现这一目标,以对皮质骨中的超声衰减进行数学建模,该衰减取决于分布参数——孔隙半径。我们使用分析型贝塔分布来表示两种潜在微观结构的情况:一种孔隙半径期望值相对较低,另一种孔隙半径期望值相对较高。我们通过将相应的贝塔密度函数输入到高阶衰减模型并添加噪声来模拟这些情况的数据。利用多分散模型和有噪声的衰减数据,我们使用普罗霍罗夫度量框架来制定和解决反问题,以使用分段线性样条重建输入的贝塔密度函数。此外,我们使用正则化项来稳定反问题。我们确定,多分散ISA模型和反问题公式使我们能够在潜在微观结构变化的情况下重建孔隙半径的真实概率密度函数。