Suppr超能文献

孔隙面积的增加而非孔隙密度,是人类皮质骨孔隙度发展的主要决定因素。

Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone.

作者信息

Thomas C David L, Feik Sophie A, Clement John G

机构信息

School of Dental Science, University of Melbourne, Victoria 3010, Australia.

出版信息

J Anat. 2006 Aug;209(2):219-30. doi: 10.1111/j.1469-7580.2006.00589.x.

Abstract

This study investigated the relative contributions of pore size and pore density (number of pores per mm2) to porosity in the midshaft of the human femur. Cross-sections were obtained from 168 individuals from a modern Australian population (mostly Anglo-Celtic). The study group comprised 73 females and 95 males, aged from 20 to 97 years. Microradiographs were made of 100-microm sections and porosity, pore areas and pore densities determined using image processing software. The cortex was divided into three rings radially and into octants circumferentially, and the porosity, pore area and pore density of each segment were calculated. Results show that 81% of the variance in porosity can be explained by changes in mean pore area with only a further 12-16% explained by changes in pore density. These effects were found to be constant across all areas of the cortex and in both sexes. These results are significant in their consistency and ordered gradation and indicate a well-regulated and systematic process of bone removal with ageing. The results show a regular progression from less porous to more porous bone; this is a uniform process that occurs in all individuals, and factors such as sex and rate of ageing determine where on this continuum any individual is at a particular time.

摘要

本研究调查了孔径和孔隙密度(每平方毫米的孔隙数量)对人类股骨中段孔隙率的相对贡献。横截面取自168名现代澳大利亚人群(大多为英裔凯尔特人)。研究组包括73名女性和95名男性,年龄在20至97岁之间。对100微米厚的切片制作了显微放射照片,并使用图像处理软件确定孔隙率、孔隙面积和孔隙密度。将皮质沿径向分为三个环,沿周向分为八个象限,并计算每个部分的孔隙率、孔隙面积和孔隙密度。结果表明,孔隙率81%的变化可以用平均孔隙面积的变化来解释,仅有另外12 - 16%的变化可以用孔隙密度的变化来解释。这些效应在皮质的所有区域以及男女两性中都是恒定的。这些结果在其一致性和有序渐变方面具有重要意义,表明随着年龄增长,骨吸收过程受到良好调节且具有系统性。结果显示从孔隙较少的骨到孔隙较多的骨有规律的进展;这是一个在所有个体中都会发生的统一过程,性别和衰老速度等因素决定了任何个体在这个连续过程中特定时间所处的位置。

相似文献

2
Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences.
J Anat. 2005 Feb;206(2):115-25. doi: 10.1111/j.1469-7580.2005.00384.x.
3
Distribution of intracortical porosity in human midfemoral cortex by age and gender.
J Bone Miner Res. 2001 Jul;16(7):1308-17. doi: 10.1359/jbmr.2001.16.7.1308.
4
Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity.
Calcif Tissue Int. 2004 May;74(5):437-47. doi: 10.1007/s00223-003-0071-z. Epub 2004 Feb 17.
7
An automated analysis of intracortical porosity in human femoral bone across age.
J Bone Miner Res. 1999 Apr;14(4):624-32. doi: 10.1359/jbmr.1999.14.4.624.
8
Age-related changes in cortical porosity of the midshaft of the human femur.
J Anat. 1997 Oct;191 ( Pt 3)(Pt 3):407-16. doi: 10.1046/j.1469-7580.1997.19130407.x.
9
CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity.
Radiology. 2000 Oct;217(1):179-87. doi: 10.1148/radiology.217.1.r00se11179.
10
Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach.
J Orthop Res. 2003 Mar;21(2):312-9. doi: 10.1016/S0736-0266(02)00157-2.

引用本文的文献

1
Modeling Frequency Dependent Ultrasound Attenuation in Cortical Bone: Solving Direct and Inverse Problems.
IEEE Int Ultrason Symp. 2020 Sep;2020. doi: 10.1109/ius46767.2020.9251388. Epub 2020 Nov 17.
2
Using ultrasonic attenuation in cortical bone to infer distributions on pore size.
Appl Math Model. 2022 Sep;109:819-832. doi: 10.1016/j.apm.2022.05.024. Epub 2022 May 19.
3
Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone.
Endocr Rev. 2024 Jul 12;45(4):493-520. doi: 10.1210/endrev/bnae004.
4
Tracking changes of individual cortical pores over 1 year via HR-pQCT in a small cohort of 60-year-old females.
Bone Rep. 2022 Nov 2;17:101633. doi: 10.1016/j.bonr.2022.101633. eCollection 2022 Dec.
5
Ultrasound Scattering in Cortical Bone.
Adv Exp Med Biol. 2022;1364:177-196. doi: 10.1007/978-3-030-91979-5_9.
6
Micro-CT-Based Bone Microarchitecture Analysis of the Murine Skull.
Methods Mol Biol. 2022;2403:129-145. doi: 10.1007/978-1-0716-1847-9_10.
7
Revealing Intraosseous Blood Flow in the Human Tibia With Ultrasound.
JBMR Plus. 2021 Oct 22;5(11):e10543. doi: 10.1002/jbm4.10543. eCollection 2021 Nov.
9
Inferring pore radius and density from ultrasonic attenuation using physics-based modeling.
J Acoust Soc Am. 2021 Jan;149(1):340. doi: 10.1121/10.0003213.

本文引用的文献

1
Relation between age, femoral neck cortical stability, and hip fracture risk.
Lancet. 2005;366(9480):129-35. doi: 10.1016/S0140-6736(05)66870-5.
2
Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences.
J Anat. 2005 Feb;206(2):115-25. doi: 10.1111/j.1469-7580.2005.00384.x.
3
Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity.
Calcif Tissue Int. 2004 May;74(5):437-47. doi: 10.1007/s00223-003-0071-z. Epub 2004 Feb 17.
4
CHANGES IN RESORPTION SPACES IN FEMORAL CORTICAL BONE WITH AGE.
J Pathol Bacteriol. 1965 Jan;89:173-8. doi: 10.1002/path.1700890118.
6
Distribution of intracortical porosity in human midfemoral cortex by age and gender.
J Bone Miner Res. 2001 Jul;16(7):1308-17. doi: 10.1359/jbmr.2001.16.7.1308.
7
Adaptation Models of Anisotropic Bone.
Comput Methods Biomech Biomed Engin. 1997;1(1):47-59. doi: 10.1080/01495739708936694.
8
Prediction of strength of cortical bone in vitro by microcomputed tomography.
Clin Biomech (Bristol). 2001 Mar;16(3):252-6. doi: 10.1016/s0268-0033(00)00092-9.
10
Regional variations in cortical modeling in the femoral mid-shaft: sex and age differences.
Am J Phys Anthropol. 2000 Jun;112(2):191-205. doi: 10.1002/(SICI)1096-8644(2000)112:2<191::AID-AJPA6>3.0.CO;2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验