Suppr超能文献

一项回顾性机器学习分析,以预测接受切开复位内固定治疗的不稳定型锁骨远端骨折患者的3个月骨不连情况。

A Retrospective Machine Learning Analysis to Predict 3-Month Nonunion of Unstable Distal Clavicle Fracture Patients Treated with Open Reduction and Internal Fixation.

作者信息

Ma Changke, Lu Wei, Liang Limei, Huang Kaizong, Zou Jianjun

机构信息

Department of Orthopaedics, Nanjing Luhe People's Hospital, Yangzhou University, Nanjing, People's Republic of China.

School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.

出版信息

Ther Clin Risk Manag. 2025 May 5;21:633-645. doi: 10.2147/TCRM.S518774. eCollection 2025.

Abstract

BACKGROUND

This retrospective study aims to predict the risk of 3-month nonunion in patients with unstable distal clavicle fractures (UDCFs) treated with open reduction and internal fixation (ORIF) using machine learning (ML) methods. ML was chosen over traditional statistical approaches because of its superior ability to capture complex nonlinear interactions and to handle imbalanced datasets.

METHODS

We collected UDCFs patients at Nanjing Luhe People's Hospital (China) between January 2015 and May 2023. The unfavorable outcome was defined as 3-month nonunion, as represented by disappeared fracture line and continuous callus. Patients meeting inclusion criteria were randomly divided into training (70%) and testing (30%) sets. Five ML models (logistic regression, random forest classifier, extreme gradient boosting, multi-layer perceptron, and category boosting) were developed. Those models were selected based on univariate analysis and refined using the Least Absolute Shrinkage and Selection Operator (LASSO). Model performance was evaluated using AUROC, AUPRC, accuracy, sensitivity, specificity, F1 score, and calibration curves.

RESULTS

A total of 248 patients were finally included into this study, and 76 (30.6%) of them had unfavorable outcomes. While all five models showed similar trends, the CatBoost model achieved the highest performance (AUROC = 0.863, AUPRC = 0.801) with consistent identification of the risk factors mentioned above. The SHAP values identified the CCD as the significant predictor for assessing the risk of 3-month nonunion in patients with UDCFs within the Chinese demographic.

CONCLUSION

The refined model incorporated four readily accessible variables, wherein the CCD, HDL levels, and blood loss were associated with an elevated risk of nonunion. Conversely, the application of nerve blocks, including postoperative block, was correlated with a reduced risk. Our results suggest that ML, particularly the CatBoost model, can be integrated into clinical workflows to aid surgeons in optimizing intraoperative techniques and postoperative management to reduce nonunion rates.

摘要

背景

本回顾性研究旨在使用机器学习(ML)方法预测接受切开复位内固定(ORIF)治疗的不稳定型锁骨远端骨折(UDCF)患者发生3个月骨不连的风险。选择ML而非传统统计方法是因为其在捕捉复杂非线性相互作用和处理不平衡数据集方面具有卓越能力。

方法

我们收集了2015年1月至2023年5月期间在中国南京六合人民医院的UDCF患者。不良结局定义为3个月骨不连,表现为骨折线消失和连续骨痂形成。符合纳入标准的患者被随机分为训练集(70%)和测试集(30%)。开发了五个ML模型(逻辑回归、随机森林分类器、极端梯度提升、多层感知器和类别提升)。这些模型基于单变量分析进行选择,并使用最小绝对收缩和选择算子(LASSO)进行优化。使用受试者工作特征曲线下面积(AUROC)、精确率-召回率曲线下面积(AUPRC)、准确率(accuracy)、敏感性(sensitivity)、特异性(specificity)、F1分数(F1 score)和校准曲线评估模型性能。

结果

本研究最终共纳入248例患者,其中76例(30.6%)出现不良结局。虽然所有五个模型都显示出相似趋势,但类别提升(CatBoost)模型表现最佳(AUROC = 0.863,AUPRC = 0.801),并一致识别出上述风险因素。SHAP值确定锁骨中外侧段(CCD)是评估中国人群中UDCF患者3个月骨不连风险的重要预测指标。

结论

优化后的模型纳入了四个易于获取的变量,其中CCD、高密度脂蛋白(HDL)水平和失血量与骨不连风险升高相关。相反,包括术后阻滞在内的神经阻滞应用与风险降低相关。我们的结果表明,ML,尤其是CatBoost模型,可以整合到临床工作流程中,以帮助外科医生优化术中技术和术后管理,从而降低骨不连发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b711/12063621/7c7a5ecac510/TCRM-21-633-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验