Shen Liang, Jin YunPeng, Pan AXiang, Wang Kai, Ye RunZe, Lin YangKai, Anwar Safraz, Xia WeiCong, Zhou Min, Guo XiaoGang
Department of Information Technology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
Department of Cardiovascular Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
Comput Methods Programs Biomed. 2025 Mar;260:108561. doi: 10.1016/j.cmpb.2024.108561. Epub 2024 Dec 13.
Accurate prediction of perioperative major adverse cardiovascular events (MACEs) is crucial, as it not only aids clinicians in comprehensively assessing patients' surgical risks and tailoring personalized surgical and perioperative management plans, but also for information-based shared decision-making with patients and efficient allocation of medical resources. This study developed and validated a machine learning (ML) model using accessible preoperative clinical data to predict perioperative MACEs in stable coronary artery disease (SCAD) patients undergoing noncardiac surgery (NCS).
We collected data from 9171 adult SCAD patients who underwent NCS and extracted 64 preoperative variables. First, the optimal data imputation, resampling, and feature selection methods were compared and selected to deal with missing data values and imbalances. Then, nine independent machine learning models (logistic regression (LR), support vector machine, Gaussian Naive Bayes (GNB), random forest, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine, categorical boosting (CatBoost), and deep neural network) and a stacking ensemble model were constructed and compared with the validated Revised Cardiac Risk Index's (RCRI) model for predictive performance, which was evaluated using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), calibration curve, and decision curve analysis (DCA). To reduce overfitting and enhance robustness, we performed hyperparameter tuning and 5-fold cross-validation. Finally, the Shapley additive interpretation (SHAP) method and a partial dependence plot (PDP) were used to determine the optimal ML model.
Of the 9,171 patients, 514 (5.6 %) developed MACEs. 24 significant preoperative features were selected for model development and evaluation. All ML models performed well, with AUROC above 0.88 and AUPRC above 0.39, outperforming the AUROC (0.716) and AUPRC (0.185) of RCRI (P < 0.001). The best independent model was XGBoost (AUROC = 0.898, AUPRC = 0.479). The calibration curve accurately predicted the risk of MACEs (Brier score = 0.040), and the DCA results showed that XGBoost had a high net benefit for predicting MACEs. The top-ranked stacking ensemble model, consisting of CatBoost, GBDT, GNB, and LR, proved to be the best (AUROC 0.894, AUPRC 0.485). We identified the top 20 most important features using the mean absolute SHAP values and depicted their effects on model predictions using PDP.
This study combined missing-value imputation, feature screening, unbalanced data processing, and advanced machine learning methods to successfully develop and verify the first ML-based perioperative MACEs prediction model for patients with SCAD, which is more accurate than RCRI and enables effective identification of high-risk patients and implementation of targeted interventions to reduce the incidence of MACEs.
准确预测围手术期主要不良心血管事件(MACE)至关重要,因为它不仅有助于临床医生全面评估患者的手术风险并制定个性化的手术及围手术期管理计划,还能用于与患者进行基于信息的共同决策以及高效分配医疗资源。本研究开发并验证了一种机器学习(ML)模型,该模型利用可获取的术前临床数据来预测接受非心脏手术(NCS)的稳定型冠状动脉疾病(SCAD)患者的围手术期MACE。
我们收集了9171例接受NCS的成年SCAD患者的数据,并提取了64个术前变量。首先,比较并选择了最佳的数据插补、重采样和特征选择方法来处理缺失数据值和数据不平衡问题。然后,构建了九个独立的机器学习模型(逻辑回归(LR)、支持向量机、高斯朴素贝叶斯(GNB)、随机森林、梯度提升决策树(GBDT)、极端梯度提升(XGBoost)、轻量级梯度提升机、分类提升(CatBoost)和深度神经网络)以及一个堆叠集成模型,并将其与经过验证的修订心脏风险指数(RCRI)模型的预测性能进行比较,使用受试者操作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)、校准曲线和决策曲线分析(DCA)对其进行评估。为了减少过拟合并增强稳健性,我们进行了超参数调整和5折交叉验证。最后,使用Shapley加法解释(SHAP)方法和局部依赖图(PDP)来确定最佳的ML模型。
在9171例患者中,514例(5.6%)发生了MACE。选择了24个重要的术前特征用于模型开发和评估。所有ML模型表现良好,AUROC高于0.88,AUPRC高于0.39,优于RCRI的AUROC(0.716)和AUPRC(0.185)(P < 0.001)。最佳的独立模型是XGBoost(AUROC = 0.898,AUPRC = 0.479)。校准曲线准确预测了MACE的风险(Brier评分 = 0.040),DCA结果表明XGBoost在预测MACE方面具有较高的净效益。由CatBoost、GBDT、GNB和LR组成的排名靠前的堆叠集成模型被证明是最佳的(AUROC 0.894,AUPRC 0.485)。我们使用平均绝对SHAP值确定了前20个最重要的特征,并使用PDP描绘了它们对模型预测的影响。
本研究结合了缺失值插补、特征筛选、不平衡数据处理和先进的机器学习方法,成功开发并验证了首个基于ML的SCAD患者围手术期MACE预测模型,该模型比RCRI更准确,能够有效识别高危患者并实施针对性干预以降低MACE的发生率。