Price Louise S, Paloni Matteo, Salvalaglio Matteo, Price Sarah L
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
Cryst Growth Des. 2025 Apr 28;25(9):3186-3209. doi: 10.1021/acs.cgd.5c00255. eCollection 2025 May 7.
Organic crystal structure prediction (CSP) studies have led to the rapid development of methods for predicting the relative energies of known and computer-generated crystal structures. There is a compromise between the level of theoretical treatment, its reliability across different types of organic systems, how its accuracy depends on the size and shape of the unit cell, and the size and the number of structures that can be modeled at an affordable computational cost. We have used our database of crystal structure prediction studies, often performed as a complement to experimental screening, to produce sets comprising 6 to 15 crystal structures, covering known polymorphs, observed packings of closely related molecules, and CSP-generated energetically competitive but distinct structures, for 20 organic molecules. These have been chosen to illustrate some of the issues that need consideration in any lattice energy method, seeking to be generally applicable to moderate-sized organic molecules, including small drug molecules. We included the methods of crystallization reported for the experimental polymorphs. In all of the examples, the original CSP used electronic structure calculations on the molecule to give the conformational energy and an anisotropic atom-atom model for the electrostatic intermolecular energy, combined with an empirical "exp-6" repulsion dispersion model to give the intermolecular lattice energy. The lattice energies and structures are compared with those obtained by reoptimizing with periodic, plane-wave, dispersion-corrected density functional theory, specifically PBE with the TS dispersion correction, and with single point energies where the many body dispersion (MBD) dispersion correction is applied, as an example of a widely used "workhorse" method. The use of this data set for a preliminary test of modeling methods is illustrated for two Machine Learned Foundation Models, MACE-MP-0 and MACE-OFF23. The challenges in modeling the putative and observed polymorphs for a range of molecules, their energies, and the possible level of agreement with experimental data are illustrated. Very similar molecules can differ significantly in the polymorphs observed, only partially reflecting the range of polymorph screening experiments used and the energetically competitive structures produced by CSP approaches based on a purely thermodynamic paradigm.
有机晶体结构预测(CSP)研究推动了预测已知和计算机生成晶体结构相对能量方法的快速发展。在理论处理水平、其在不同类型有机体系中的可靠性、其准确性如何依赖于晶胞的大小和形状,以及能够以可承受的计算成本建模的结构的大小和数量之间存在折衷。我们利用我们的晶体结构预测研究数据库(这些研究通常作为实验筛选的补充进行),为20种有机分子生成了包含6到15个晶体结构的集合,涵盖已知多晶型物、密切相关分子的观察到的堆积以及CSP生成的能量上有竞争力但不同的结构。选择这些分子是为了说明在任何晶格能量方法中需要考虑的一些问题,这些方法试图普遍适用于中等大小的有机分子,包括小药物分子。我们纳入了实验多晶型物所报道的结晶方法。在所有例子中,最初的CSP使用分子上的电子结构计算来给出构象能量,并使用各向异性原子 - 原子模型来计算静电分子间能量,再结合经验性的“exp - 6”排斥色散模型来给出分子间晶格能量。将晶格能量和结构与通过使用周期性、平面波、色散校正密度泛函理论(具体为带有TS色散校正的PBE)重新优化得到的结果进行比较,并与应用多体色散(MBD)色散校正的单点能量进行比较,以此作为一种广泛使用的“主力”方法的示例。针对两种机器学习基础模型MACE - MP - 0和MACE - OFF23说明了该数据集在建模方法初步测试中的使用情况。展示了对一系列分子的假定和观察到的多晶型物进行建模时所面临的挑战、它们的能量以及与实验数据可能的一致程度。非常相似的分子在观察到的多晶型物中可能有显著差异,这仅部分反映了所使用的多晶型筛选实验范围以及基于纯粹热力学范式的CSP方法所产生的能量上有竞争力的结构。