Suppr超能文献

第七次晶体结构预测盲测能量排序阶段交换空穴偶极矩色散校正的评估

Assessment of the exchange-hole dipole moment dispersion correction for the energy ranking stage of the seventh crystal structure prediction blind test.

作者信息

Mayo R Alex, Price Alastair J A, Otero-de-la-Roza Alberto, Johnson Erin R

机构信息

Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, Nova Scotia, B3H 4R2, Canada.

Departamento de Química Física y Analítica and MALTA-Consolider Team, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.

出版信息

Acta Crystallogr B Struct Sci Cryst Eng Mater. 2024 Dec 1;80(Pt 6):595-605. doi: 10.1107/S2052520624002774.

Abstract

The seventh blind test of crystal structure prediction (CSP) methods substantially increased the level of complexity of the target compounds relative to the previous tests organized by the Cambridge Crystallographic Data Centre. In this work, the performance of density-functional methods is assessed using numerical atomic orbitals and the exchange-hole dipole moment dispersion correction (XDM) for the energy-ranking phase of the seventh blind test. Overall, excellent performance was seen for the two rigid molecules (XXVII, XXVIII) and for the organic salt (XXXIII). However, for the agrochemical (XXXI) and pharmaceutical (XXXII) targets, the experimental polymorphs were ranked fairly high in energy amongst the provided candidate structures and inclusion of thermal free-energy corrections from the lattice vibrations was found to be essential for compound XXXI. Based on these results, it is proposed that the importance of vibrational free-energy corrections increases with the number of rotatable bonds.

摘要

晶体结构预测(CSP)方法的第七次盲测相对于剑桥晶体学数据中心之前组织的测试,大幅提高了目标化合物的复杂程度。在这项工作中,使用数值原子轨道和交换空穴偶极矩色散校正(XDM)对第七次盲测的能量排序阶段的密度泛函方法的性能进行了评估。总体而言,对于两个刚性分子(XXVII、XXVIII)和有机盐(XXXIII)观察到了优异的性能。然而,对于农用化学品(XXXI)和药物(XXXII)目标,实验多晶型物在提供的候选结构中能量排名相当高,并且发现对于化合物XXXI,纳入晶格振动的热自由能校正至关重要。基于这些结果,有人提出振动自由能校正的重要性随着可旋转键的数量增加而增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验