Suppr超能文献

磁共振扩散峰度成像在胶质瘤分子分类中的诊断及预测性能:一项系统评价与Meta分析

The diagnostic and prediction performance of MR diffusion kurtosis imaging in the glioma molecular classification: a systematic review and meta-analysis.

作者信息

Zhao Hongfang, Hou Zonggang, He Qifeng, Liu Xinlong, Xie Jian

机构信息

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

Front Neurol. 2025 Apr 25;16:1543619. doi: 10.3389/fneur.2025.1543619. eCollection 2025.

Abstract

BACKGROUND

Although diffusion magnetic resonance imaging (dMRI), particularly diffusion kurtosis imaging (DKI), has demonstrated efficacy in distinguishing between low- and high-grade gliomas, its predictive utility across various molecular genotypes remains unclear. Evaluating the accuracy of DKI and identifying sources of heterogeneity in its predictive performance could advance noninvasive molecular diagnostic methods and support the development of personalized treatment strategies.

MATERIALS AND METHODS

A literature search of the PubMed, Web of Science, Cochrane Library, Embase, and Medline databases was performed. The studies retrieved were screened by two researchers (HFZ and ZGH), and those fulfilling the inclusion criteria were subsequently included in the meta-analysis. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. The analyses summarized the mean differences in mean kurtosis (MK) and mean diffusivity (MD) in patients harboring various genotypes using suitable models, and explored heterogeneity. Finally, a bivariate restricted maximum likelihood estimation method and meta-regression analysis were performed to assess diagnostic potential and stability.

RESULTS

Fourteen studies comprising 886 patients were included in this meta-analysis. Regarding MK and MD, the mean difference between isocitrate dehydrogenase () mutation and wild type was -0.21 (95% confidence interval [CI] -0.27 to -0.15;  = 93%) and 0.22 (95% CI 0.11 to 0.33;  = 92%), respectively. This heterogeneity could be explained by imaging parameters such as repetition time, echo time, maximal -value, and number of diffusion directions. However, the mean difference did not reflect the genetic status of 1p/19q, -thalassemia/mental retardation syndrome-X-linked () gene, or O-methylguanine-DNA-methyltransferase (). Analysis of diagnostic accuracy revealed that the pooled areas under the curve for MK and MD, based on status, were 0.96 (95% CI 0.93 to 0.97) and 0.76 (95% CI 0.71 to 0.81), respectively. Heterogeneity was not observed for these DKI parameters.

CONCLUSION

MK and MD exhibited potential diagnostic utility in the prediction of glioma molecular status and should be explored in medical practice. These parameters should be compared with other MRI models to develop a stable and suitable genetic molecular prediction method for patients with gliomas.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024568923, CRD42024568923.

摘要

背景

尽管扩散磁共振成像(dMRI),尤其是扩散峰度成像(DKI),已在区分低级别和高级别胶质瘤方面显示出有效性,但其在各种分子基因型中的预测效用仍不清楚。评估DKI的准确性并确定其预测性能中的异质性来源,可能会推动非侵入性分子诊断方法的发展,并支持个性化治疗策略的制定。

材料与方法

对PubMed、Web of Science、Cochrane图书馆、Embase和Medline数据库进行文献检索。检索到的研究由两名研究人员(HFZ和ZGH)进行筛选,符合纳入标准的研究随后被纳入荟萃分析。使用诊断准确性研究质量评估2(QUADAS-2)工具评估研究质量。分析使用合适的模型总结了携带各种基因型患者的平均峰度(MK)和平均扩散率(MD)的平均差异,并探讨了异质性。最后,进行双变量限制最大似然估计方法和荟萃回归分析,以评估诊断潜力和稳定性。

结果

本荟萃分析纳入了14项研究,共886例患者。关于MK和MD,异柠檬酸脱氢酶()突变型与野生型之间的平均差异分别为-0.21(95%置信区间[CI]-0.27至-0.15; =93%)和0.22(95%CI 0.11至0.33; =92%)。这种异质性可以通过成像参数来解释,如重复时间、回波时间、最大 -值和扩散方向数。然而,平均差异并未反映1p/19q、X连锁的地中海贫血/智力发育迟缓综合征()基因或O-甲基鸟嘌呤-DNA甲基转移酶()的基因状态。诊断准确性分析显示,基于 状态的MK和MD的汇总曲线下面积分别为0.96(95%CI 0.93至0.97)和0.76(95%CI 0.71至0.81)。这些DKI参数未观察到异质性。

结论

MK和MD在预测胶质瘤分子状态方面显示出潜在的诊断效用,应在医学实践中进行探索。应将这些参数与其他MRI模型进行比较,以开发一种稳定且合适的胶质瘤患者基因分子预测方法。

系统评价注册

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024568923,CRD42024568923。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/12061957/b8029b4fa057/fneur-16-1543619-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验