Suppr超能文献

基于磁共振扩散峰度成像的脑胶质瘤分级诊断:一项诊断准确性的 Meta 分析。

Glioma Grade Discrimination with MR Diffusion Kurtosis Imaging: A Meta-Analysis of Diagnostic Accuracy.

机构信息

From the Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden (Anna Falk Delgado); Department of Neuroradiology, Karolinska University Hospital, Neurocentrum R1, Karolinska Vägen, 17176 Solna, Stockholm, Sweden (Anna Falk Delgado); Departments of Diagnostic Radiology (M.N.) and Clinical Sciences (D.v.W.), Faculty of Medicine, Lund University, Lund, Sweden; and Department of Surgical Sciences, Uppsala University, Uppsala, Sweden (Alberto Falk Delgado).

出版信息

Radiology. 2018 Apr;287(1):119-127. doi: 10.1148/radiol.2017171315. Epub 2017 Dec 4.

Abstract

Purpose To assess the diagnostic test accuracy and sources of heterogeneity for the discriminative potential of diffusion kurtosis imaging (DKI) to differentiate low-grade glioma (LGG) (World Health Organization [WHO] grade II) from high-grade glioma (HGG) (WHO grade III or IV). Materials and Methods The Cochrane Library, Embase, Medline, and the Web of Science Core Collection were systematically searched by two librarians. Retrieved hits were screened for inclusion and were evaluated with the revised tool for quality assessment for diagnostic accuracy studies (commonly known as QUADAS-2) by two researchers. Statistical analysis comprised a random-effects model with associated heterogeneity analysis for mean differences in mean kurtosis (MK) in patients with LGG or HGG. A bivariate restricted maximum likelihood estimation method was used to describe the summary receiver operating characteristics curve and bivariate meta-regression. Results Ten studies involving 430 patients were included. The mean difference in MK between LGG and HGG was 0.17 (95% confidence interval [CI]: 0.11, 0.22) with a z score equal to 5.86 (P < .001). The statistical heterogeneity was explained by glioma subtype, echo time, and the proportion of recurrent glioma versus primary glioma. The pooled area under the curve was 0.94 for discrimination of HGG from LGG, with 0.85 (95% CI: 0.74, 0.92) sensitivity and 0.92 (95% CI: 0.81, 0.96) specificity. Heterogeneity was driven by neuropathologic subtype and DKI technique. Conclusion MK shows high diagnostic accuracy in the discrimination of LGG from HGG. RSNA, 2017 Online supplemental material is available for this article.

摘要

目的

评估扩散峰度成像(DKI)鉴别低级别胶质瘤(LGG)(世界卫生组织[WHO] 2 级)与高级别胶质瘤(HGG)(WHO 3 级或 4 级)的诊断准确性及其异质性来源。

材料与方法

两位图书管理员通过 Cochrane 图书馆、Embase、Medline 和 Web of Science 核心合集系统地进行了检索。两位研究人员使用改良后的诊断准确性研究质量评估工具(通常称为 QUADAS-2)筛选纳入的研究,并对其进行评估。统计分析采用随机效应模型,对 LGG 或 HGG 患者的平均峰度(MK)均值差异进行异质性分析。使用双变量限制最大似然估计法来描述汇总受试者工作特征曲线和双变量荟萃回归。

结果

共纳入 10 项涉及 430 例患者的研究。LGG 和 HGG 之间的 MK 均值差异为 0.17(95%置信区间:0.11,0.22),z 值为 5.86(P<.001)。统计异质性由神经胶质瘤亚型、回波时间以及复发性胶质瘤与原发性胶质瘤的比例解释。用于鉴别 HGG 与 LGG 的曲线下面积的汇总值为 0.94,敏感度为 0.85(95%置信区间:0.74,0.92),特异度为 0.92(95%置信区间:0.81,0.96)。异质性由神经病理学亚型和 DKI 技术驱动。

结论

MK 对鉴别 LGG 与 HGG 具有较高的诊断准确性。RSNA,2017

在线补充材料可在本文中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验