Suppr超能文献

利用大语言模型进行日本放射技师考试教育资源开发的初步研究。

Pilot Study on Using Large Language Models for Educational Resource Development in Japanese Radiological Technologist Exams.

作者信息

Kondo Tatsuya, Okamoto Masashi, Kondo Yohan

机构信息

Department of Radiological Technology, Graduate School of Health Sciences, Niigata University, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518 Japan.

出版信息

Med Sci Educ. 2025 Jan 18;35(2):919-927. doi: 10.1007/s40670-024-02251-1. eCollection 2025 Apr.

Abstract

In this study, we explored the potential application of large language models (LLMs) to the development of educational resources for medical licensure exams in non-English-speaking contexts, focusing on the Japanese Radiological Technologist National Exam. We categorized multiple-choice questions into image-based, calculation, and textual types. We generated explanatory texts using Copilot, an LLM integrated with Microsoft Bing, and assessed their quality on a 0-4-point scale. LLMs achieved high performance for textual questions, which demonstrated their strong capability to process specialized content. However, we identified challenges in generating accurate formulas and performing calculations for calculation questions, as well as in interpreting complex medical images in image-based questions. To address these issues, we suggest using LLMs with programming functionalities for calculations and using keyword-based prompts for medical image interpretation. The findings highlight the active role of educators in managing LLM-supported learning environments, particularly by validating outputs and providing supplementary guidance to ensure accuracy. Furthermore, the rapid evolution of LLM technology necessitates continuous adaptation of utilization strategies to align with their advancing capabilities. In this study, we underscored the potential of LLMs to enhance educational practices in non-English-speaking regions, while addressing critical challenges to improve their reliability and utility.

摘要

在本研究中,我们探讨了大语言模型(LLMs)在非英语环境下医学执照考试教育资源开发中的潜在应用,重点关注日本放射技师国家考试。我们将多项选择题分为基于图像、计算和文本类型。我们使用与微软必应集成的大语言模型Copilot生成解释性文本,并以0至4分的量表评估其质量。大语言模型在文本问题上表现出色,显示出其处理专业内容的强大能力。然而,我们发现在生成准确公式和处理计算问题的计算方面,以及在基于图像的问题中解释复杂医学图像方面存在挑战。为了解决这些问题,我们建议使用具有编程功能的大语言模型进行计算,并使用基于关键词的提示进行医学图像解释。研究结果突出了教育工作者在管理大语言模型支持的学习环境中的积极作用,特别是通过验证输出并提供补充指导以确保准确性。此外,大语言模型技术的快速发展需要不断调整使用策略,以与其不断提升的能力保持一致。在本研究中,我们强调了大语言模型在增强非英语地区教育实践方面的潜力,同时应对关键挑战以提高其可靠性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2f8/12059199/31b9d310f537/40670_2024_2251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验