Suppr超能文献

提高诊断准确性:胃特异性血清生物标志物在基于风险的真实世界恶性胃病变序贯筛查中的作用。

Enhancing diagnostic accuracy: Role of stomach-specific serum biomarkers in real-world risk-based sequential screening for malignant gastric lesions.

作者信息

Chi Yanna, Tian Hongrui, Shi Chao, Liu Zhen, Li Xue, Zhang Miao, Liu Jun, Chen Xianmei, Yang Wenlei, Pan Yaqi, Chen Huanyu, Liu Mengfei, Hu Shengjuan, He Zhonghu, Ke Yang

机构信息

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China.

Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750001, China.

出版信息

Chin J Cancer Res. 2025 Apr 30;37(2):154-164. doi: 10.21147/j.issn.1000-9604.2025.02.03.

Abstract

OBJECTIVE

A risk-based sequential screening strategy, from questionnaire-based assessment to biomarker measurement and then to endoscopic examination, has the potential to enhance gastric cancer (GC) screening efficiency. We aimed to evaluate the ability of five common stomach-specific serum biomarkers to further enrich high-risk individuals for GC in the questionnaire-identified high-risk population.

METHODS

This study was conducted based on a risk-based screening program in Ningxia Hui Autonomous Region, China. We first performed questionnaire assessment involving 23,381 individuals (7,042 outpatients and 16,339 individuals from the community), and those assessed as "high-risk" were then invited to participate in serological assays and endoscopic examinations. The serological biomarker model was derived based on logistic regression, with predictors selected via the Akaike information criterion. Model performance was evaluated by the area under the receiver operating characteristic curve (AUC).

RESULTS

A total of 2,011 participants were ultimately included for analysis. The final serological biomarker model had three predictors, comprising pepsinogen I (PGI), pepsinogen I/II ratio (PGR), and anti- immunoglobulin G (anti- IgG) antibodies. This model generated an AUC of 0.733 (95% confidence interval: 0.655-0.812) and demonstrated the best discriminative ability compared with previously developed serological biomarker models. As the risk cut-off value of our model rose, the detection rate increased and the number of endoscopies needed to detect one case decreased.

CONCLUSIONS

PGI, PGR, and anti- IgG could be jointly used to further enrich high-risk individuals for GC among those selected by questionnaire assessment, providing insight for the development of a multi-stage risk-based sequential strategy for GC screening.

摘要

目的

基于风险的序贯筛查策略,从基于问卷的评估到生物标志物检测再到内镜检查,有可能提高胃癌(GC)筛查效率。我们旨在评估五种常见的胃特异性血清生物标志物在问卷确定的高危人群中进一步富集GC高危个体的能力。

方法

本研究基于中国宁夏回族自治区的一项基于风险的筛查项目进行。我们首先对23381人(7042名门诊患者和16339名社区居民)进行了问卷评估,被评估为“高危”的人随后被邀请参加血清学检测和内镜检查。血清生物标志物模型基于逻辑回归得出,通过赤池信息准则选择预测因子。模型性能通过受试者操作特征曲线(AUC)下的面积进行评估。

结果

最终共纳入2011名参与者进行分析。最终的血清生物标志物模型有三个预测因子,包括胃蛋白酶原I(PGI)、胃蛋白酶原I/II比值(PGR)和抗免疫球蛋白G(抗IgG)抗体。该模型的AUC为0.733(95%置信区间:0.655 - 0.812),与先前开发的血清生物标志物模型相比,具有最佳的判别能力。随着我们模型风险截断值的提高,检测率增加,检测一例所需的内镜检查次数减少。

结论

PGI、PGR和抗IgG可联合用于在问卷评估筛选出的人群中进一步富集GC高危个体,为制定基于风险的多阶段序贯GC筛查策略提供思路。

相似文献

8
[Comparison of different serological methods in screening early gastric cancer].[不同血清学方法在早期胃癌筛查中的比较]
Zhonghua Nei Ke Za Zhi. 2019 Apr 1;58(4):294-300. doi: 10.3760/cma.j.issn.0578-1426.2019.04.011.

本文引用的文献

6
Cancer screening in China: a steep road from evidence to implementation.中国的癌症筛查:从证据到实施的艰难之路。
Lancet Public Health. 2023 Dec;8(12):e996-e1005. doi: 10.1016/S2468-2667(23)00186-X. Epub 2023 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验