Liao Hongmei, Chen Yangui, He Yujia, Zou Minghong, Zheng Lintao, Liao Jinghang, Rana Kusum, Qian Wei, Ding Yijuan
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China.
Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China.
Virulence. 2025 Dec;16(1):2503434. doi: 10.1080/21505594.2025.2503434. Epub 2025 May 18.
Fungal cell wall acts as a defense barrier, shielding the cell from varying environmental stresses. Cell wall proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins, are involved in swift and appropriate responses to minor environmental changes in fungi. However, the roles of these proteins in the pathogenic remain largely unexplored. Here, we identified a novel GPI-anchored protein in , SsGSP1, comprising a Kre9_KNH domain. was upregulated during infection, and the loss-of-function mutants of exhibited the compromised cell wall integrity and reduced β-glucan content. During inoculation on , , and , the -deletion strains demonstrated the decreased virulence. The transgenic . line carrying the sRNA targeting enhanced resistance to via Host-Induced Gene Silencing (HIGS). The -deficient strains displayed the heightened sensitivity to various stresses, including osmotic pressure, oxidative stress, and heat shock. The yeast two-hybrid and BiFC assays confirmed that SsGSP1 interacted with the key stress-related proteins catalase SsCat2, heat shock protein Sshsp60, and ABC transporter SsBMR1. Accordingly, transcriptome analysis revealed that the disruption of downregulated the expression of genes involved in oxidative stress response, heat shock response, and chemical agent resistance. These results collectively delineate the intricate role of GPI-anchored protein SsGSP1 in β-glucan, cell wall integrity, and virulence and may act as a potential surface sensor to elicit signal transduction in response to environmental stresses in .
真菌细胞壁作为一种防御屏障,保护细胞免受各种环境压力的影响。细胞壁蛋白,如糖基磷脂酰肌醇(GPI)锚定蛋白,参与真菌对微小环境变化的快速而适当的反应。然而,这些蛋白在致病性方面的作用仍 largely unexplored。在这里,我们在[具体真菌名称未给出]中鉴定出一种新型的GPI锚定蛋白,SsGSP1,它包含一个Kre9_KNH结构域。[该蛋白名称未给出]在感染过程中上调,其功能缺失突变体表现出细胞壁完整性受损和β-葡聚糖含量降低。在接种到[具体植物名称未给出]、[具体植物名称未给出]和[具体植物名称未给出]上时,[具体基因名称未给出]缺失菌株的毒力降低。携带靶向[具体基因名称未给出]的sRNA的转基因[具体植物名称未给出]系通过宿主诱导基因沉默(HIGS)增强了对[具体真菌名称未给出]的抗性。[具体基因名称未给出]缺陷菌株对包括渗透压、氧化应激和热休克在内的各种应激表现出更高的敏感性。酵母双杂交和BiFC分析证实,SsGSP1与关键的应激相关蛋白过氧化氢酶SsCat2、热休克蛋白Sshsp60和ABC转运蛋白SsBMR1相互作用。因此,转录组分析表明,[具体基因名称未给出]的破坏下调了参与氧化应激反应、热休克反应和化学试剂抗性的基因的表达。这些结果共同描绘了GPI锚定蛋白SsGSP1在β-葡聚糖、细胞壁完整性和毒力方面的复杂作用,并且可能作为一种潜在的表面传感器,以响应[具体真菌名称未给出]中的环境压力引发信号转导。