Laso-Pérez Rafael, Rivas-Santisteban Juan, Fernandez-Gonzalez Nuria, Mundy Christopher J, Tamames Javier, Pedrós-Alió Carlos
Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.
Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
mBio. 2025 Jun 11;16(6):e0074925. doi: 10.1128/mbio.00749-25. Epub 2025 May 12.
In the Arctic, phytoplankton blooms are recurring phenomena occurring during the spring-summer seasons and influenced by the strong polar seasonality. Bloom dynamics are affected by nutrient availability, especially nitrogen, which is the main limiting nutrient in the Arctic. This study aimed to investigate the changes in an Arctic microbial community using omics approaches during a phytoplankton bloom focusing on the nitrogen cycle. Using metagenomic and metatranscriptomic samples from the Dease Strait (Canada) from March to July (2014), we reconstructed 176 metagenome-assembled genomes. Bacteria dominated the microbial community, although archaea reached up to 25% of metagenomic abundance in early spring, when archaea actively expressed genes associated with ammonia oxidation to nitrite (). The resulting nitrite was presumably further oxidized to nitrate by a bacterium that highly expressed a nitrite oxidoreductase gene (). Since May, the constant increase in chlorophyll indicated the occurrence of a phytoplankton bloom, promoting the successive proliferation of different groups of chemoorganotrophic bacteria (). These bacteria showed different strategies to obtain nitrogen, whether it be from organic or inorganic sources, according to the expression patterns of genes encoding transporters for nitrogen compounds. In contrast, during summer, the chemolithotrophic organisms thriving during winter reduced their relative abundance and the expression of their catabolic genes. Based on our functional analysis, we see a transition from a community where nitrogen-based chemolitotrophy plays a relevant role to a chemoorganotrophic community based on the carbohydrates released during the phytoplankton bloom, where different groups seem to specialize in different nitrogen sources.IMPORTANCEThe Arctic is one of the environments most affected by anthropogenic climate change. It is expected that the rise in temperature and change in ice cover will impact the marine microbial communities and the associated biogeochemical cycles. In this regard, nitrogen is the main nutrient limiting Arctic phytoplankton blooms. In this study, we combine genetic and expression data to study the nitrogen cycle at the community level over a time series covering from March to July. Our results indicate the importance of different taxa (from archaea to bacteria) and processes (from chemolithoautotrophy to incorporation of different nitrogen sources) in the cycling of nitrogen during this period. This study provides a baseline for future research that should include additional methodologies like biogeochemical analysis to fully understand the changes occurring on these communities due to global change.
在北极地区,浮游植物水华是春夏季反复出现的现象,受强烈的极地季节性影响。水华动态受养分可用性的影响,尤其是氮,它是北极地区主要的限制性养分。本研究旨在利用组学方法,在以氮循环为重点的浮游植物水华期间,调查北极微生物群落的变化。我们使用了2014年3月至7月从加拿大迪斯海峡采集的宏基因组和宏转录组样本,重建了176个宏基因组组装基因组。细菌在微生物群落中占主导地位,尽管古菌在早春时达到宏基因组丰度的25%,此时古菌积极表达与氨氧化为亚硝酸盐相关的基因( )。产生的亚硝酸盐可能被一种高度表达亚硝酸盐氧化还原酶基因的细菌进一步氧化为硝酸盐( )。自5月以来,叶绿素的持续增加表明浮游植物水华的发生,促进了不同组别的化学有机营养细菌的相继增殖( )。根据编码氮化合物转运蛋白的基因表达模式,这些细菌显示出从有机或无机来源获取氮的不同策略。相比之下,在夏季,冬季繁盛的化能无机营养生物降低了它们的相对丰度及其分解代谢基因的表达。基于我们的功能分析,我们看到一个从以氮基化能无机营养起相关作用的群落,向基于浮游植物水华期间释放的碳水化合物的化学有机营养群落的转变,在这个群落中,不同的群体似乎专门利用不同的氮源。
重要性
北极是受人为气候变化影响最大的环境之一。预计温度上升和冰盖变化将影响海洋微生物群落及相关的生物地球化学循环。在这方面,氮是限制北极浮游植物水华的主要养分。在本研究中,我们结合遗传和表达数据,在涵盖3月至7月的时间序列上,从群落水平研究氮循环。我们的结果表明了不同分类群(从古菌到细菌)和过程(从化能无机自养到不同氮源的纳入)在这一时期氮循环中的重要性。本研究为未来的研究提供了一个基线,未来的研究应包括生物地球化学分析等额外方法,以全面了解由于全球变化这些群落所发生的变化。