Suppr超能文献

多阳离子相互作用减轻钠层状阴极中的晶格应变

Multicationic interactions mitigating lattice strain in sodium layered cathodes.

作者信息

Wang Haoji, Liu Tongchao, Chen Hongyi, Mei Yu, Gao Jinqiang, Ni Lianshan, Hong Ningyun, Huang Jiangnan, Hu Xinyu, Deng Wentao, Zou Guoqiang, Hou Hongshuai, Silvester Debbie S, Banks Craig E, Ji Xiaobo, Amine Khalil

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha, China.

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.

出版信息

Nat Commun. 2025 May 13;16(1):4409. doi: 10.1038/s41467-025-59666-6.

Abstract

Transition-metal (TM) layered oxides have emerged as the primary cathode choice for sodium-ion batteries (SIBs) due to their high energy density and sustainable chemistry using non-critical elements. However, their anisotropic lattice strain and stress accumulation during (de)sodiation lead to severe structural degradation, yet an intrinsic strain-depressant approach remains elusive. Herein, we propose entropy regulation with zero Li/Co usage to mitigate harmful lattice displacements and enhance the electrochemical performance of sodium layered cathodes. Our findings demonstrate that high entropy design effectively inhibits TMO octahedra distortions upon cycling, as evidenced by hard X-ray absorption spectroscopy, greatly reducing near-surface structural deconstruction and interface side reactions. Furthermore, multicationic interactions driven by configurational entropy thermodynamically mitigate the formation of oxygen defects and strengthen ligand-to-metal coordination. The complementarity inherent in charge compensation within complex systems is unveiled and the restrained lattice parameters deviations without interior volume residuals are successfully achieved. As a result, the multicationic cathode exhibits improved cycling stability and Na diffusion kinetics in both half and full cells. The cathode chemistries outlined here broaden the prospects for lattice engineering to alleviate bulk fatigue and open up the possibility to develop an economically viable layered oxides with long durability.

摘要

过渡金属(TM)层状氧化物因其高能量密度以及使用非关键元素的可持续化学性质,已成为钠离子电池(SIB)的主要阴极选择。然而,它们在脱/嵌钠过程中的各向异性晶格应变和应力积累会导致严重的结构退化,而一种内在的应变抑制方法仍然难以捉摸。在此,我们提出零锂/钴使用的熵调控方法,以减轻有害的晶格位移并提高钠层状阴极的电化学性能。我们的研究结果表明,高熵设计有效地抑制了循环过程中TMO八面体的畸变,硬X射线吸收光谱证明了这一点,大大减少了近表面结构破坏和界面副反应。此外,由构型熵驱动的多阳离子相互作用在热力学上减轻了氧缺陷的形成,并加强了配体与金属的配位。揭示了复杂系统中电荷补偿所固有的互补性,并成功实现了无内部体积残余的受限晶格参数偏差。结果,多阳离子阴极在半电池和全电池中均表现出改善的循环稳定性和钠扩散动力学。本文概述的阴极化学拓宽了晶格工程缓解整体疲劳的前景,并为开发具有长期耐久性的经济可行的层状氧化物开辟了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05f2/12069713/2f5d698144ef/41467_2025_59666_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验