Sasikumar A, Ravi Logesh, Devarajan Malathi, Almazyad Abdulaziz S, De Shuvodeep, Xiong Guojiang, Mousavirad Seyed Jalaleddin, Mohamed Ali Wagdy
Department of Data Science and Business Systems, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
Centre for Advanced Data Science, Chennai, Tamil Nadu, 600127, India.
Sci Rep. 2025 May 12;15(1):16421. doi: 10.1038/s41598-025-00772-2.
The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system's total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits.
在过去十年中,多用户多输入多输出(MU-MIMO)天线领域出现了显著的研究活动和重大进展。MU-MIMO天线系统必须在不增加带宽或能量的情况下容纳众多用户。在接收者总数超过发射天线数量的系统中,用户调度成为利用多用户异构性并获得最大增益的关键策略。由于计算成本高,目前使用的许多用户选择方法,如贪婪算法和穷举搜索,都不适用于MU-MIMO系统。合适的调度机制对于MU-MIMO系统中的各类用户有效利用带宽并提高系统总速率至关重要。在本文中,我们提出了一种基于群体的元启发式方法的用户和天线调度,即二进制樽海鞘群算法(binary SSA),以在低计算复杂度下提高系统总和速率。我们专门使用基于群体的元启发式优化技术来模拟MU-MIMO系统中的用户调度问题,用二元决策来表征复杂问题。此外,在系统吞吐量/总和速率方面,二进制SSA明显优于现有的基于群体的模型,如二进制蝙蝠算法(binary BA)、粒子群优化算法(PSO)、樽海鞘群算法(SSA)、萤火虫算法(FPA)和二进制花授粉算法(binary FPA)。与随机搜索方案和其他现有的次优调度方法相比,所提出的二进制SSA技术也有效地实现了系统总和速率。与二进制BA和二进制FPA方法相比,二进制SSA具有更高的收敛速率和更优越的搜索能力。仿真结果表明,所提出的基于二进制SSA的调度方案具有显著的性能优势。