Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy.
Sensors (Basel). 2024 Sep 22;24(18):6125. doi: 10.3390/s24186125.
Brain-computer interfaces (BCIs) are promising tools for motor neurorehabilitation. Achieving a balance between classification accuracy and system responsiveness is crucial for real-time applications. This study aimed to assess how the duration of time windows affects performance, specifically classification accuracy and the false positive rate, to optimize the temporal parameters of MI-BCI systems. We investigated the impact of time window duration on classification accuracy and false positive rate, employing Linear Discriminant Analysis (LDA), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) on data acquired from six post-stroke patients and on the external BCI IVa dataset. EEG signals were recorded and processed using the Common Spatial Patterns (CSP) algorithm for feature extraction. Our results indicate that longer time windows generally enhance classification accuracy and reduce false positives across all classifiers, with LDA performing the best. However, to maintain the real-time responsiveness, crucial for practical applications, a balance must be struck. The results suggest an optimal time window of 1-2 s, offering a trade-off between classification performance and excessive delay to guarantee the system responsiveness. These findings underscore the importance of temporal optimization in MI-BCI systems to improve usability in real rehabilitation scenarios.
脑机接口(BCI)是运动神经康复的有前途的工具。在分类准确性和系统响应之间取得平衡对于实时应用至关重要。本研究旨在评估时间窗口持续时间如何影响性能,特别是分类准确性和假阳性率,以优化 MI-BCI 系统的时间参数。我们研究了时间窗口持续时间对分类准确性和假阳性率的影响,使用线性判别分析(LDA)、多层感知器(MLP)和支持向量机(SVM)对来自六位中风后患者的数据和外部 BCI IVa 数据集进行了分析。使用共同空间模式(CSP)算法记录和处理 EEG 信号以进行特征提取。我们的结果表明,较长的时间窗口通常会提高所有分类器的分类准确性并减少假阳性,其中 LDA 的性能最佳。然而,为了保持实时响应能力,这对于实际应用至关重要,必须取得平衡。结果表明,1-2 秒的最佳时间窗口在分类性能和过度延迟之间提供了折衷,以保证系统的响应能力。这些发现强调了在 MI-BCI 系统中进行时间优化的重要性,以提高实际康复场景中的可用性。