文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种含有精油的制剂:对糖尿病大鼠生化参数和氧化应激的改善作用

A formulation containing essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats.

作者信息

Sena-Júnior Ailton Santos, Andrade Cleverton Nascimento Santana, Moura Pedro Henrique Macedo, Dos Santos Jocsã Hémany Cândido, Trancoso Cauãn Torres, Silva Eloia Emanuelly Dias, Silva Deise Maria Rego Rodrigues, Telles Ênio Pereira, Silva Luiz André Santos, Teles Isabella Lima Dantas, de Almeida Sara Fernanda Mota, de Souza Daniel Alves, Santos Jileno Ferreira, Martins Felipe José Aidar, Silva Ana Mara de Oliveira E, Lauton-Santos Sandra, de Araujo Guilherme Rodolfo Souza, Correa Cristiane Bani, Nunes Rogéria De Souza, Borges Lysandro Pinto, Lira Ana Amélia Moreira

机构信息

Department of Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil.

Department of Biology, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil.

出版信息

Beilstein J Nanotechnol. 2025 May 7;16:617-636. doi: 10.3762/bjnano.16.48. eCollection 2025.


DOI:10.3762/bjnano.16.48
PMID:40356885
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12067095/
Abstract

Diabetes mellitus (DM) is a highly prevalent public health problem characterized by hyperglycemia that causes complications due to the generation of reactive oxygen species and oxidative damage. Studies have shown that essential oils containing citral, such as lemongrass, have various biological activities, including bactericidal, antiviral, antifungal, antioxidant, and hypoglycemic effects. Therefore, this study aims to obtain a microemulsified formulation containing the essential oil of (EOCF) and to evaluate its antioxidant and antidiabetic activity in diabetic rats. The microemulsion (ME) was obtained after consulting the corresponding pseudoternary phase diagram and showed stability, isotropy, Newtonian behavior, nanometric size (15.2 nm), and pH 4.2. Both EOCF and the ME showed high antioxidant activity, but the ME resulted in greater antioxidant activity, potentiating the activity of isolated EOCF. Finally, male Wistar rats (3 months old, 200-250 g) with streptozotocin-induced type-1 DM were supplemented with EOCF and ME (32 mg/kg) for 21 days. Both EOCF and ME supplementation resulted in reduced blood glucose levels and improved lipid profiles when compared to the control group. Additionally, the ME was able to provide additional benefits, such as reduced liver damage, improved renal function, reduced systemic inflammation, and increased high-density lipoprotein levels. Overall, the results show that EOCF was efficiently incorporated into the microemulsion, improving its antioxidant activity and showing promising results for use in the treatment of DM via the oral route.

摘要

糖尿病(DM)是一个高度普遍的公共卫生问题,其特征为高血糖,由于活性氧的产生和氧化损伤而导致并发症。研究表明,含有柠檬醛的精油,如柠檬草,具有多种生物活性,包括杀菌、抗病毒、抗真菌、抗氧化和降血糖作用。因此,本研究旨在获得一种含有柠檬草精油的微乳化制剂(EOCF),并评估其在糖尿病大鼠中的抗氧化和抗糖尿病活性。在查阅相应的伪三元相图后获得了微乳液(ME),其表现出稳定性、各向同性、牛顿流体行为、纳米尺寸(15.2纳米)和pH值4.2。EOCF和ME均表现出高抗氧化活性,但ME的抗氧化活性更高,增强了分离的EOCF的活性。最后,对链脲佐菌素诱导的1型糖尿病雄性Wistar大鼠(3个月大,200-250克)补充EOCF和ME(32毫克/千克),持续21天。与对照组相比,补充EOCF和ME均导致血糖水平降低和血脂谱改善。此外,ME能够提供额外的益处,如减少肝损伤、改善肾功能、减轻全身炎症和提高高密度脂蛋白水平。总体而言,结果表明EOCF被有效地纳入微乳液中,提高了其抗氧化活性,并显示出通过口服途径用于治疗糖尿病的有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/7a20e293ea16/Beilstein_J_Nanotechnol-16-617-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/ce3dbd7c936a/Beilstein_J_Nanotechnol-16-617-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/825cbf38b40b/Beilstein_J_Nanotechnol-16-617-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/f51e7557a559/Beilstein_J_Nanotechnol-16-617-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/b14b6432cc59/Beilstein_J_Nanotechnol-16-617-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/aa2b7cd68bb3/Beilstein_J_Nanotechnol-16-617-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/96d26d61e203/Beilstein_J_Nanotechnol-16-617-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/39d83eb533c4/Beilstein_J_Nanotechnol-16-617-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/81d94791df13/Beilstein_J_Nanotechnol-16-617-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/a2771f471aff/Beilstein_J_Nanotechnol-16-617-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/062aa869f5db/Beilstein_J_Nanotechnol-16-617-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/08d01deec352/Beilstein_J_Nanotechnol-16-617-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/2cb5844c506c/Beilstein_J_Nanotechnol-16-617-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/f8bcd7dd62f8/Beilstein_J_Nanotechnol-16-617-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/7a20e293ea16/Beilstein_J_Nanotechnol-16-617-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/ce3dbd7c936a/Beilstein_J_Nanotechnol-16-617-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/825cbf38b40b/Beilstein_J_Nanotechnol-16-617-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/f51e7557a559/Beilstein_J_Nanotechnol-16-617-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/b14b6432cc59/Beilstein_J_Nanotechnol-16-617-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/aa2b7cd68bb3/Beilstein_J_Nanotechnol-16-617-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/96d26d61e203/Beilstein_J_Nanotechnol-16-617-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/39d83eb533c4/Beilstein_J_Nanotechnol-16-617-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/81d94791df13/Beilstein_J_Nanotechnol-16-617-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/a2771f471aff/Beilstein_J_Nanotechnol-16-617-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/062aa869f5db/Beilstein_J_Nanotechnol-16-617-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/08d01deec352/Beilstein_J_Nanotechnol-16-617-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/2cb5844c506c/Beilstein_J_Nanotechnol-16-617-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/f8bcd7dd62f8/Beilstein_J_Nanotechnol-16-617-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb9/12067095/7a20e293ea16/Beilstein_J_Nanotechnol-16-617-g015.jpg

相似文献

[1]
A formulation containing essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats.

Beilstein J Nanotechnol. 2025-5-7

[2]
Influence of Lemongrass Essential Oil () Supplementation on Diabetes in Rat Model.

Life (Basel). 2024-3-4

[3]
Cymbopogon flexuosus essential oil as an additive improves growth, biochemical and physiological responses and survival against Aeromonas hydrophila infection in Nile tilapia.

An Acad Bras Cienc. 2020

[4]
Effect of Microencapsulation on Chemical Composition and Antimicrobial, Antioxidant and Cytotoxic Properties of Lemongrass () Essential Oil.

Food Technol Biotechnol. 2022-9

[5]
Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats.

J Food Drug Anal. 2017-3-17

[6]
Antimicrobial Activity of Lemongrass Essential Oil () and Its Active Component Citral Against Dual-Species Biofilms of and Species.

Front Cell Infect Microbiol. 2020-12-22

[7]
Efficiency of essential oils of Ocimum basilicum and Cymbopogum flexuosus in the sedation and anaesthesia of Nile tilapia juveniles.

An Acad Bras Cienc. 2017

[8]
Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components.

Chemosphere. 2021-8

[9]
Nanoemulsions containing Cymbopogon flexuosus essential oil: Development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities.

Microb Pathog. 2018-3-26

[10]
Antioxidant activity and chemical composition of meat from broilers fed diets containing different essential oils.

Vet World. 2021-6

本文引用的文献

[1]
Impact of oil type on the development and oral bioavailability of self-nanoemulsifying drug delivery systems containing simvastatin.

Sci Rep. 2024-9-29

[2]
Influence of Lemongrass Essential Oil () Supplementation on Diabetes in Rat Model.

Life (Basel). 2024-3-4

[3]
Incorporation of Cordia glabrata (Mart.) A.DC. extract in microemulsions and their potential antioxidant, photoprotective and virucidal activities.

Braz J Biol. 2022-5-20

[4]
Microencapsulation of D.C. Stapf Essential Oil with Spray Drying: Development, Characterization, and Antioxidant and Antibacterial Activities.

Foods. 2022-4-13

[5]
Microemulsions formed by PPG-5-CETETH-20 at low concentrations for transdermal delivery of nifedipine: Structural and in vitro study.

Colloids Surf B Biointerfaces. 2022-6

[6]
Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion.

ACS Appl Mater Interfaces. 2021-9-15

[7]
Development of Triamcinolone Acetonide-Loaded Microemulsion as a Prospective Ophthalmic Delivery System for Treatment of Uveitis: In Vitro and In Vivo Evaluation.

Pharmaceutics. 2021-3-25

[8]
Insights into Novel Excipients of Self-Emulsifying Drug Delivery Systems and Their Significance: An Updated Review.

Crit Rev Ther Drug Carrier Syst. 2021

[9]
Transdermal delivery of duloxetine-sulfobutylether-β-cyclodextrin complex for effective management of depression.

Int J Pharm. 2021-2-1

[10]
Bicontinuous microemulsions containing Melaleuca alternifolia essential oil as a therapeutic agent for cutaneous wound healing.

Drug Deliv Transl Res. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索