Chen Yufen, He Jingyuan, Pan Xia
Department of Orthopaedics, The First Affiliated Hospital of Soochow University.
Front Surg. 2025 Apr 28;12:1585460. doi: 10.3389/fsurg.2025.1585460. eCollection 2025.
This study aims to develop a preoperative risk assessment tool for deep vein thrombosis (DVT) in pelvic fracture patients, offering evidence-based guidance for surgeons.
A cohort of 400 pelvic fracture patients was analyzed. Ten candidate predictors were initially identified via LASSO regression from 25 clinical variables. Four independent risk factors-emergency abdominal surgery, Injury Severity Score (ISS), serum creatinine levels, and aspartate aminotransferase (AST)-were subsequently incorporated into a multivariate logistic regression model. A nomogram was developed using R software, with calibration accuracy assessed via the rms package and clinical utility evaluated through decision curve analysis (DCA) using the ggDCA package.
The final model demonstrated excellent discriminative ability, with area under the curve (AUC) values of 0.88 (95% CI: 0.81-0.93) in the training cohort and 0.88 (95% CI: 0.80-0.95) in the validation cohort. Calibration curves confirmed strong alignment between predicted and observed DVT probabilities, while DCA highlighted the nomogram's clinical applicability across a wide risk threshold range.
The validated nomogram provides a reliable preoperative tool for stratifying DVT risk in pelvic fracture patients. By enabling early identification of high-risk individuals, this model supports targeted prophylactic interventions, ultimately enhancing perioperative safety and patient outcomes.
本研究旨在开发一种用于骨盆骨折患者深静脉血栓形成(DVT)的术前风险评估工具,为外科医生提供循证指导。
分析了400例骨盆骨折患者的队列。最初通过LASSO回归从25个临床变量中确定了10个候选预测因子。随后将四个独立危险因素——急诊腹部手术、损伤严重程度评分(ISS)、血清肌酐水平和天冬氨酸转氨酶(AST)纳入多变量逻辑回归模型。使用R软件绘制列线图,通过rms包评估校准准确性,并使用ggDCA包通过决策曲线分析(DCA)评估临床实用性。
最终模型显示出优异的判别能力,训练队列中的曲线下面积(AUC)值为0.88(95%CI:0.81-0.93),验证队列中的AUC值为0.88(95%CI:0.80-0.95)。校准曲线证实预测的和观察到的DVT概率之间有很强的一致性,而DCA突出了列线图在很宽的风险阈值范围内的临床适用性。
经过验证的列线图为骨盆骨折患者的DVT风险分层提供了一种可靠的术前工具。通过能够早期识别高危个体,该模型支持有针对性的预防性干预措施,最终提高围手术期安全性和患者预后。