Suppr超能文献

检索增强生成:有效之处与经验教训

Retrieval Augmented Generation: What Works and Lessons Learned.

作者信息

Elkin Peter L, Mehta Guresh, LeHouillier Frank, Koppel Ross, Elkin Aaron N, Nebeker Jonathan, Brown Steven H

机构信息

Department of Biomedical Informatics, University at Buffalo.

Office of Health Informatics, Department of Veterans Affairs.

出版信息

Stud Health Technol Inform. 2025 May 12;326:2-6. doi: 10.3233/SHTI250225.

Abstract

Retrieval Augmented Generation has been shown to improve the output of large language models (LLMs) by providing context to the question or scenario posed to the model. We have tried a series of experiments to understand how best to improve the performance of the native models. We present the results of each of several experiments. These can serve as lessons learned for scientists looking to improve the performance of large language models for medical question answering tasks.

摘要

检索增强生成已被证明可以通过为模型提出的问题或场景提供上下文来提高大语言模型(LLM)的输出。我们进行了一系列实验,以了解如何最好地提高原生模型的性能。我们展示了几个实验的结果。这些结果可为希望提高大语言模型在医学问答任务中性能的科学家提供经验教训。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验