Numata Munenori, Tanaka Kaori, Asai Atsushi, Matsushita Mamoru, Yoneda Hiroshi, Tanaka Shoki, Fukai Takuya, Taguchi Hiroka, Kikkawa Yoshihiro
Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
Core Electronics Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
J Am Chem Soc. 2025 Jun 18;147(24):20612-20630. doi: 10.1021/jacs.5c03550. Epub 2025 May 13.
In this study, we demonstrated host-guest chemistry under dynamic conditions using a polymer-ring system as a model. We found that a Hagen-Poiseuille flow drives a guest polymer into the cavities of ring hosts repeatedly, in a manner distinct from self-threading under thermodynamic equilibrium. Using poly(ethylene glycol) (PEG) and γ-cyclodextrin (γ-CD) as a representative polymer-ring system, two PEG units were threaded into γ-CD in a head-to-tail fashion, forming extremely long pseudodouble-stranded polyrotaxane (DS-PR) nanofibers. These novel DS-PR structures further assembled hierarchically through facial hydrogen bonding, resulting in micrometer-scale crystalline fibers. We systematically investigated the influence of solution motion on host-guest interactions by varying hydrodynamic parameters (e.g., total flow rate, channel geometry, and channel length) and structural parameters (e.g., polymer length and γ-CD/PEG ratio). Remarkably, the forward end of the PEG chain preferentially pierced the wider rim of the γ-CD. Based on these observations, we devised an active-threading mechanism, wherein the end of the PEG chain pierces multiple rings while satisfying both energetic and steric requirements, with the microflow channel acting as a catalyst to accelerate host-guest interaction. Finally, we explored the possibility of cothreading α- and γ-CD units onto a single PEG chain. Notably, overcoming the classical "lock-and-key" paradigm of host-guest chemistry, the observed "piercing effect" enabled the same PEG chain to thread into two differently sized CDs depending on the α-CD/γ-CD ratio in solution.
在本研究中,我们以聚合物 - 环体系为模型,展示了动态条件下的主客体化学。我们发现哈根 - 泊肃叶流以一种不同于热力学平衡下自穿线的方式,将客体聚合物反复驱动到环主体的空腔中。以聚乙二醇(PEG)和γ - 环糊精(γ - CD)作为代表性的聚合物 - 环体系,两个PEG单元以头对尾的方式穿入γ - CD中,形成了极长的假双链聚轮烷(DS - PR)纳米纤维。这些新型的DS - PR结构通过面内氢键进一步进行层次组装,形成微米级的晶体纤维。我们通过改变流体动力学参数(如总流速、通道几何形状和通道长度)和结构参数(如聚合物长度和γ - CD/PEG比例),系统地研究了溶液运动对主客体相互作用的影响。值得注意的是,PEG链的前端优先穿透γ - CD较宽的边缘。基于这些观察结果,我们设计了一种主动穿线机制,其中PEG链的末端在满足能量和空间要求的同时穿透多个环,微流通道起到催化剂的作用,加速主客体相互作用。最后,我们探索了将α - 和γ - CD单元共同穿入单条PEG链的可能性。值得注意的是,克服了主客体化学经典的“锁钥”范式,观察到的“穿透效应”使同一条PEG链能够根据溶液中的α - CD/γ - CD比例穿入两种不同尺寸的环糊精中。