Suppr超能文献

用于传统X射线成像的人工智能降噪工具评估——使用人体模型对不同辐射剂量水平下的儿科胸部检查进行视觉分级研究

Evaluation of an artificial intelligence noise reduction tool for conventional X-ray imaging - a visual grading study of pediatric chest examinations at different radiation dose levels using anthropomorphic phantoms.

作者信息

Hultenmo Maria, Pernbro Johanna, Ahlin Jenny, Bonnier Martin, Båth Magnus

机构信息

Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gula stråket 2B, SE-413 45, Gothenburg, Sweden.

Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

出版信息

Pediatr Radiol. 2025 May 13. doi: 10.1007/s00247-025-06251-0.

Abstract

BACKGROUND

Noise reduction tools developed with artificial intelligence (AI) may be implemented to improve image quality and reduce radiation dose, which is of special interest in the more radiosensitive pediatric population.

OBJECTIVE

The aim of the present study was to examine the effect of the AI-based intelligent noise reduction (INR) on image quality at different dose levels in pediatric chest radiography.

MATERIALS AND METHODS

Anteroposterior and lateral images of two anthropomorphic phantoms were acquired with both standard noise reduction and INR at different dose levels. In total, 300 anteroposterior and 420 lateral images were included. Image quality was evaluated by three experienced pediatric radiologists. Gradings were analyzed with visual grading characteristics (VGC) resulting in area under the VGC curve (AUC) values and associated confidence intervals (CI).

RESULTS

Image quality of different anatomical structures and overall clinical image quality were statistically significantly better in the anteroposterior INR images than in the corresponding standard noise reduced images at each dose level. Compared with reference anteroposterior images at a dose level of 100% with standard noise reduction, the image quality of the anteroposterior INR images was graded as significantly better at dose levels of ≥ 80%. Statistical significance was also achieved at lower dose levels for some structures. The assessments of the lateral images showed similar trends but with fewer significant results.

CONCLUSION

The results of the present study indicate that the AI-based INR may potentially be used to improve image quality at a specific dose level or to reduce dose and maintain the image quality in pediatric chest radiography.

摘要

背景

利用人工智能(AI)开发的降噪工具可用于提高图像质量并降低辐射剂量,这在对辐射更为敏感的儿科人群中尤为重要。

目的

本研究旨在探讨基于AI的智能降噪(INR)对儿科胸部X线摄影不同剂量水平下图像质量的影响。

材料与方法

使用标准降噪和INR在不同剂量水平下采集两个人体模型的前后位和侧位图像。总共纳入了300张前后位图像和420张侧位图像。由三名经验丰富的儿科放射科医生评估图像质量。采用视觉分级特征(VGC)分析分级结果,得出VGC曲线下面积(AUC)值及相关置信区间(CI)。

结果

在每个剂量水平下,前后位INR图像中不同解剖结构的图像质量和整体临床图像质量在统计学上均显著优于相应的标准降噪图像。与采用标准降噪的100%剂量水平的参考前后位图像相比,≥80%剂量水平的前后位INR图像的图像质量分级明显更好。对于某些结构,在较低剂量水平时也具有统计学显著性。侧位图像的评估显示出类似趋势,但显著结果较少。

结论

本研究结果表明,基于AI的INR可能潜在地用于在特定剂量水平下提高图像质量,或在儿科胸部X线摄影中降低剂量并维持图像质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验