Suppr超能文献

心理压力的多维关联:来自传统统计方法和使用具有全国代表性的加拿大样本的机器学习的见解。

Multidimensional correlates of psychological stress: Insights from traditional statistical approaches and machine learning using a nationally representative Canadian sample.

作者信息

Hives Benjamin A, Beauchamp Mark R, Liu Yan, Weiss Jordan, Puterman Eli

机构信息

School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.

Department of Educational and Counselling Psychology, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

PLoS One. 2025 May 13;20(5):e0323197. doi: 10.1371/journal.pone.0323197. eCollection 2025.

Abstract

Approximately one-fifth of Canadians report high levels of psychological stress. This is alarming, as chronic stress is associated with non-communicable diseases and premature mortality. In order to create effective interventions and public policy for stress reduction, factors associated with stress must be identified and understood. We analyzed data from the 2012 'Canadian Community Health Survey - Mental Health' (CCHS-MH), including 66 potential correlates, drawn from a range of domains (e.g., psychological, physical, social, demographic factors). First, we used a random forest algorithm to determine the most important predictors of psychological stress, then we used linear regressions to quantify the linear associations between the important predictors and psychological stress. In total, 23,089 Canadian adults responded to the 2012 CCHS-MH, which was weighted to be nationally representative. Random forest analyses found that, after accounting for variance from other factors and considering complex interactions, life satisfaction (relative importance = 1.00), negative social interactions (0.99), primary stress source (0.85), and age (0.77) were the most important correlates of psychological stress. To a lesser extent, employment status (0.36), was also an important variable. Univariable linear regression suggested that these variables had effects ranging from small to medium-to-large. Multiple linear regression showed that lower life satisfaction, being younger, greater negative social interaction, reporting a primary stressor, and being employed were all found to be associated with greater psychological stress (beta range = 0.03 to 0.84, all p < 0.001, R2 = 0.264). Further, these factors accounted for 26% of the variance of psychological stress. This study highlights that the most important correlates of stress reflect diverse psychological, social, and demographic factors. These findings highlight that stress reduction interventions may require a multidisciplinary approach. However, further longitudinal and experimental studies are required.

摘要

约五分之一的加拿大人称自己承受着高强度的心理压力。这一情况令人担忧,因为慢性压力与非传染性疾病及过早死亡有关。为了制定有效的减压干预措施和公共政策,必须识别并了解与压力相关的因素。我们分析了2012年“加拿大社区健康调查——心理健康”(CCHS-MH)的数据,其中包括从一系列领域(如心理、身体、社会、人口因素)选取的66个潜在相关因素。首先,我们使用随机森林算法来确定心理压力的最重要预测因素,然后使用线性回归来量化重要预测因素与心理压力之间的线性关联。共有23,089名加拿大成年人对2012年CCHS-MH进行了回应,该调查经过加权处理以具有全国代表性。随机森林分析发现,在考虑其他因素的方差并考虑复杂的相互作用后,生活满意度(相对重要性 = 1.00)、负面社交互动(0.99)、主要压力源(0.85)和年龄(0.77)是心理压力最重要的相关因素。在较小程度上,就业状况(0.36)也是一个重要变量。单变量线性回归表明,这些变量的影响范围从小到中到大。多元线性回归显示,较低的生活满意度、较年轻年龄、更多的负面社交互动、报告存在主要压力源以及就业都与更大的心理压力相关(β范围 = 0.03至0.84,所有p < 0.001,R2 = 0.264)。此外,这些因素占心理压力方差的26%。这项研究强调,压力最重要的相关因素反映了不同的心理、社会和人口因素。这些发现突出表明,减压干预措施可能需要多学科方法。然而,还需要进一步的纵向和实验研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41d2/12074393/d7370d13e621/pone.0323197.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验