Belinchon-Moreno Javier, Berard Aurelie, Canaguier Aurelie, Le-Clainche Isabelle, Rittener-Ruff Vincent, Lagnel Jacques, Hinsinger Damien, Boissot Nathalie, Faivre-Rampant Patricia
Centre INRAE Île-de-France Versailles-Saclay, EPGV, Université Paris-Saclay, Evry F-91057, France.
INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet 84143, France.
G3 (Bethesda). 2025 Jul 9;15(7). doi: 10.1093/g3journal/jkaf098.
The construction of accurate whole genome sequences is pivotal for characterizing the genetic diversity of plant species, identifying genes controlling important traits, or understanding their evolutionary dynamics. Here, we generated the nuclear, mitochondrial, and chloroplast high-quality assemblies of 5 melon (Cucumis melo L.) accessions representing 5 botanical groups, using the Oxford Nanopore sequencing technology. The accessions here studied included varied origins, fruit shapes, sizes, and resistance traits, providing a holistic view of melon genomic diversity. The final chromosome-level genome assemblies ranged in size from 359 to 365 Mb, with approximately 25× coverage for 4 of them multiplexed in half of a PromethION flowcell, and 48× coverage for the fifth, sequenced individually in another half of a PromethION flowcell. Contigs N50 ranged from 7 to 15 Mb for all the assemblies, and very long contigs reaching sizes of 20-25 Mb, almost compatible with complete chromosomes, were assembled in all the accessions. Quality assessment through Benchmarking Universal Single-Copy Orthologs (BUSCO) and Merqury indicated the high completeness and accuracy of the assemblies, with BUSCO values exceeding 96% for all accessions, and Merqury QV values ranging between 41 and 47. We focused on the complex NLR resistance gene regions to validate the accuracy of the assemblies in highly complex and repetitive regions. Through Nanopore adaptive sampling, we generated accurately targeted assemblies of these regions with significantly higher coverage, enabling the comparison to our whole genome assemblies. Overall, these chromosome-level assembled genomes constitute a valuable resource for research focused on melon diversity, disease resistance, evolution, and breeding applications.
构建准确的全基因组序列对于表征植物物种的遗传多样性、鉴定控制重要性状的基因或了解其进化动态至关重要。在此,我们使用牛津纳米孔测序技术,生成了代表5个植物学类群的5份甜瓜(Cucumis melo L.)种质的核基因组、线粒体基因组和叶绿体高质量组装序列。这里研究的种质包括不同的起源、果实形状、大小和抗性性状,提供了甜瓜基因组多样性的整体视图。最终的染色体水平基因组组装大小在359至365 Mb之间,其中4份在半个PromethION流动槽中进行多重测序,覆盖度约为25×,第五份在另半个PromethION流动槽中单独测序,覆盖度为48×。所有组装序列的重叠群N50在7至15 Mb之间,并且在所有种质中都组装出了长达20 - 25 Mb、几乎与完整染色体相当的超长重叠群。通过基准通用单拷贝直系同源基因(BUSCO)和Merqury进行的质量评估表明组装序列具有高完整性和准确性,所有种质的BUSCO值均超过96%,Merqury QV值在41至47之间。我们聚焦于复杂的NLR抗性基因区域,以验证在高度复杂和重复区域中组装序列的准确性。通过纳米孔适应性采样,我们生成了这些区域的准确定向组装序列,其覆盖度显著更高,从而能够与我们的全基因组组装序列进行比较。总体而言,这些染色体水平组装的基因组构成了一个有价值的资源,可用于专注于甜瓜多样性、抗病性、进化和育种应用的研究。