Suppr超能文献

用于研究蛋白质的构象转变和环境相互作用。

for Investigating Conformational Transitions and Environmental Interactions of Proteins.

作者信息

Yang Song, Song Chen

机构信息

Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

School of Medicine, Fuzhou University, Fuzhou, Fujian 350108, China.

出版信息

J Chem Theory Comput. 2025 May 27;21(10):5304-5321. doi: 10.1021/acs.jctc.5c00256. Epub 2025 May 13.

Abstract

Proteins are inherently dynamic molecules, and their conformational transitions among various states are essential for numerous biological processes, which are often modulated by their interactions with surrounding environments. Although molecular dynamics (MD) simulations are widely used to investigate these transitions, all-atom (AA) methods are often limited by short time scales and high computational costs, and coarse-grained (CG) implicit-solvent Go̅-like models are usually incapable of studying the interactions between proteins and their environments. Here, we present an approach called Multiple-basin Go̅-Martini, which combines the recent Go̅-Martini model with an exponential mixing scheme to facilitate the simulation of spontaneous protein conformational transitions in explicit environments. We demonstrate the versatility of our method through five diverse case studies: GlnBP, Arc, Hinge, SemiSWEET, and TRAAK, representing ligand-binding proteins, fold-switching proteins, designed proteins, transporters, and mechanosensitive ion channels, respectively. Multiple-basin Go̅-Martini offers a new computational tool for investigating protein conformational transitions, identifying key intermediate states, and elucidating essential interactions between proteins and their environments, particularly protein-membrane interactions. In addition, this approach can efficiently generate thermodynamically meaningful data sets of protein conformational space, which may enhance deep learning-based models for predicting protein conformation distributions.

摘要

蛋白质本质上是动态分子,其在各种状态之间的构象转变对于众多生物过程至关重要,而这些过程通常受其与周围环境相互作用的调节。尽管分子动力学(MD)模拟被广泛用于研究这些转变,但全原子(AA)方法常常受到短时间尺度和高计算成本的限制,而粗粒度(CG)隐式溶剂类Go̅模型通常无法研究蛋白质与其环境之间的相互作用。在此,我们提出了一种称为多盆地Go̅-Martini的方法,该方法将最近的Go̅-Martini模型与指数混合方案相结合,以促进在明确环境中对蛋白质自发构象转变的模拟。我们通过五个不同的案例研究展示了我们方法的通用性:GlnBP、Arc、Hinge、SemiSWEET和TRAAK,它们分别代表配体结合蛋白、折叠转换蛋白、设计蛋白、转运蛋白和机械敏感离子通道。多盆地Go̅-Martini为研究蛋白质构象转变、识别关键中间状态以及阐明蛋白质与其环境之间的基本相互作用,特别是蛋白质-膜相互作用,提供了一种新的计算工具。此外,这种方法可以有效地生成蛋白质构象空间的热力学有意义的数据集,这可能会增强基于深度学习的预测蛋白质构象分布的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验