Suppr超能文献

将废弃聚对苯二甲酸乙二酯塑料大规模升级回收为可生物降解的聚乙醇酸塑料。

Scale-up upcycling of waste polyethylene terephthalate plastics to biodegradable polyglycolic acid plastics.

作者信息

Wang Yuxiang, Liu Fulai, Chen Jiu, Tse Edmund C M, Shi Rui, Chen Yong

机构信息

Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.

University of Chinese Academy of Sciences, Beijing, P. R. China.

出版信息

Nat Commun. 2025 May 13;16(1):4440. doi: 10.1038/s41467-025-59667-5.

Abstract

Electrochemical upcycling of waste polyethylene terephthalate (PET) into biodegradable polyglycolic acid (PGA) is a promising solution to relieve plastic pollution. However, both the low current density and tedious separation process for target glycolic acid (GA) products in a flow electrolysis have hindered industrial-scale applications. Here, we show an interfacial acid-base microenvironment regulation strategy for the efficient oxidation of PET-derived ethylene glycol (EG) into GA using Pd-CoCrO catalysts. Specifically, only a cell voltage of 1.25 V is needed to deliver a current density of ca. 290 mA cm. Moreover, a green separation method is developed to obtain high-purity GA (99%). 20 kg of waste PET is employed for the pilot plant test (stack electrolyzer: 324 cm× 5), which exhibits 93.0% GA selectivity at 280 mA cm (current: 90.72 A) with a yield rate of 0.32 kg h. After polymerization, PGA yield can reach up to 87%, demonstrating the potential of this technique for large-scale PGA production from waste PET.

摘要

将废弃聚对苯二甲酸乙二酯(PET)电化学升级循环转化为可生物降解的聚乙醇酸(PGA)是缓解塑料污染的一种很有前景的解决方案。然而,流动电解中目标乙醇酸(GA)产物的低电流密度和繁琐的分离过程阻碍了其工业规模应用。在此,我们展示了一种界面酸碱微环境调控策略,用于使用Pd-CoCrO催化剂将PET衍生的乙二醇(EG)高效氧化为GA。具体而言,仅需1.25 V的电池电压即可提供约290 mA cm的电流密度。此外,还开发了一种绿色分离方法以获得高纯度GA(99%)。采用20 kg废弃PET进行中试工厂测试(堆叠电解槽:324 cm×5),在280 mA cm(电流:90.72 A)下GA选择性为93.0%,产率为0.32 kg h。聚合后,PGA产率可达87%,证明了该技术从废弃PET大规模生产PGA的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9edd/12075683/dbaf20a31d37/41467_2025_59667_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验