Bubb Kerry L, Hamm Morgan O, Tullius Thomas W, Min Joseph K, Ramirez-Corona Bryan, Mueth Nicholas A, Ranchalis Jane, Mao Yizi, Bergstrom Erik J, Vollger Mitchell R, Trapnell Cole, Cuperus Josh T, Stergachis Andrew B, Queitsch Christine
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
Nat Plants. 2025 May 13. doi: 10.1038/s41477-025-02002-z.
The genomes of flowering plants consist largely of transposable elements (TEs), some of which modulate gene regulation and function. However, the repetitive nature of TEs and difficulty of mapping individual TEs by short-read sequencing have hindered our understanding of their regulatory potential. Here we show that long-read chromatin fibre sequencing (Fiber-seq) comprehensively identifies accessible chromatin regions (ACRs) and CpG methylation across the maize genome. We uncover stereotypical ACR patterns at young TEs that degenerate with evolutionary age, resulting in TE enhancers preferentially marked by a novel plant-specific epigenetic feature: simultaneous hyper-CpG methylation and chromatin accessibility. We show that TE ACRs are co-opted as gene promoters and that ACR-containing TEs can facilitate gene amplification. Lastly, we uncover a pervasive epigenetic signature-hypo-5mCpG methylation and diffuse chromatin accessibility-directing TEs to specific loci, including the loci that sparked McClintock's discovery of TEs.
开花植物的基因组主要由转座元件(TEs)组成,其中一些转座元件可调节基因调控和功能。然而,转座元件的重复性质以及通过短读长测序对单个转座元件进行定位的困难阻碍了我们对其调控潜力的理解。在这里,我们表明长读长染色质纤维测序(Fiber-seq)全面鉴定了玉米基因组中的可及染色质区域(ACRs)和CpG甲基化。我们在年轻的转座元件上发现了定型的ACR模式,这些模式会随着进化年龄而退化,导致转座元件增强子优先由一种新的植物特异性表观遗传特征标记:同时高CpG甲基化和染色质可及性。我们表明转座元件ACRs被用作基因启动子,并且含有ACR的转座元件可以促进基因扩增。最后,我们发现了一种普遍的表观遗传特征——低5mCpG甲基化和弥散的染色质可及性——将转座元件导向特定位点,包括引发麦克林托克发现转座元件的位点。