Pérez-Morales Gilberto, Martínez-Conde Karla V, Caspeta Luis, Merino Enrique, Cevallos Miguel A, Gosset Guillermo, Martinez Alfredo
Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico.
Department of Molecular Microbiology, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico.
Appl Microbiol Biotechnol. 2025 May 13;109(1):120. doi: 10.1007/s00253-025-13495-1.
The heat shock response is a cellular protection mechanism against sudden temperature upshifts extensively studied in Escherichia coli. However, the effects of thermal evolution on this response remain largely unknown. In this study, we investigated the early and late physiological and transcriptional responses to temperature upshift in a thermotolerant strain under continuous culture conditions. Adaptive laboratory evolution was performed on a metabolically engineered E. coli strain (JU15), designed for D-lactic acid production, to enable cellular growth and fermentation of glucose at 45 °C in batch cultures. The resulting homofermentative strain, ECL45, successfully adapted to 45 °C in a glucose-mineral medium at pH 7 under non-aerated conditions. The thermal-adapted ECL45 retained the parental strain's high volumetric productivity and product/substrate yield. Genomic sequencing of ECL45 revealed eight mutations, including one in a non-coding region and six within the coding regions of genes associated with metabolic, transport, and regulatory functions. Transcriptomic analysis comparing the evolved strain with its parental counterpart under early and late temperature upshifts indicated that the adaptation involved a controlled stringent response. This mechanism likely contributes to the strain's ability to maintain growth capacity at high temperatures. KEY POINTS: • The temperature upshift response of a thermally adapted strain in continuous culture was studied for the first time. • Genomic analyses revealed the presence of a double point mutation in the spoT gene. • The thermally adapted strain maintained underexpression of the spoT gene at high temperatures. • Supplementation of 0.15 g/L of hydrolyzed protein favored thermal adaptation at 45 °C.
热休克反应是一种针对温度突然升高的细胞保护机制,在大肠杆菌中已得到广泛研究。然而,热进化对这种反应的影响在很大程度上仍不为人知。在本研究中,我们调查了在连续培养条件下,一个耐热菌株对温度升高的早期和晚期生理及转录反应。对一株为生产D-乳酸而进行代谢工程改造的大肠杆菌菌株(JU15)进行了适应性实验室进化,使其能够在分批培养中于45°C下进行细胞生长和葡萄糖发酵。所得的同型发酵菌株ECL45在pH 7的葡萄糖-矿物质培养基中,在非通气条件下成功适应了45°C。热适应的ECL45保留了亲本菌株的高体积生产力和产物/底物产率。对ECL45的基因组测序揭示了八个突变,包括一个位于非编码区,六个位于与代谢、转运和调节功能相关的基因编码区内。转录组分析比较了进化菌株与其亲本菌株在早期和晚期温度升高时的情况,表明这种适应涉及一种受控的严格反应。这种机制可能有助于该菌株在高温下维持生长能力。要点:• 首次研究了热适应菌株在连续培养中的温度升高反应。• 基因组分析揭示了spoT基因中存在双点突变。• 热适应菌株在高温下维持spoT基因的低表达。• 添加0.15 g/L水解蛋白有利于在45°C下的热适应。