Suppr超能文献

用于心理健康的预训练语言模型:关于阿拉伯语问答分类的实证研究

Pre- Trained Language Models for Mental Health: An Empirical Study on Arabic Q&A Classification.

作者信息

Alhuzali Hassan, Alasmari Ashwag

机构信息

Department of Computer Science and Artificial Intelligence, Umm Al-Qura University, Makkah 24382, Saudi Arabia.

Department of Computer Science, King Khalid University, Abha 62521, Saudi Arabia.

出版信息

Healthcare (Basel). 2025 Apr 24;13(9):985. doi: 10.3390/healthcare13090985.

Abstract

Pre-Trained Language Models hold significant promise for revolutionizing mental health care by delivering accessible and culturally sensitive resources. Despite this potential, their efficacy in mental health applications, particularly in the Arabic language, remains largely unexplored. To the best of our knowledge, comprehensive studies specifically evaluating the performance of PLMs on diverse Arabic mental health tasks are still scarce. This study aims to bridge this gap by evaluating the performance of pre-trained language models in classifying questions and answers within the mental health care domain. We used the MentalQA dataset, which comprises Arabic Questions and Answers interactions related to mental health. Our experiments involved four distinct learning strategies: traditional feature extraction, using PLMs as feature extractors, fine-tuning PLMs, and employing prompt-based techniques with models, such as GPT-3.5 and GPT-4 in zero-shot and few-shot learning scenarios. Arabic-specific PLMs, including AraBERT, CAMelBERT, and MARBERT, were evaluated. Traditional feature-extraction methods paired with Support Vector Machines (SVM) showed competitive performance, but PLMs outperformed them due to their superior ability to capture semantic nuances. In particular, MARBERT achieved the highest performance, with Jaccard scores of 0.80 for the question classification and 0.86 for the answer classification. Further analysis revealed that fine-tuning PLMs enhances their performance, and the size of the training dataset plays a critical role in model effectiveness. Prompt-based techniques, particularly few-shot learning with GPT-3.5, demonstrated significant improvements, increasing the accuracy of question classification by 12% and the accuracy of answer classification by 45%. The study demonstrates the potential of PLMs and prompt-based approaches to provide mental health support to Arabic-speaking populations, providing valuable tools for individuals seeking assistance in this field. This research advances the understanding of PLMs in mental health care and emphasizes their potential to improve accessibility and effectiveness in Arabic-speaking contexts.

摘要

预训练语言模型有望通过提供可获取且具有文化敏感性的资源,给精神卫生保健带来变革。尽管有这种潜力,但它们在精神卫生应用中的功效,尤其是在阿拉伯语方面,仍基本未被探索。据我们所知,专门评估预训练语言模型在各种阿拉伯语精神卫生任务上表现的全面研究仍然很少。本研究旨在通过评估预训练语言模型在精神卫生保健领域对问题和答案进行分类的性能来弥合这一差距。我们使用了MentalQA数据集,该数据集包含与精神卫生相关的阿拉伯语问答互动。我们的实验涉及四种不同的学习策略:传统特征提取、将预训练语言模型用作特征提取器、微调预训练语言模型,以及在零样本和少样本学习场景中对模型采用基于提示的技术,如GPT - 3.5和GPT - 4。对包括AraBERT、CAMelBERT和MARBERT在内的特定于阿拉伯语的预训练语言模型进行了评估。与支持向量机(SVM)相结合的传统特征提取方法表现出了竞争力,但预训练语言模型因其捕捉语义细微差别的卓越能力而优于它们。特别是,MARBERT取得了最高性能,问题分类的杰卡德分数为0.80,答案分类的杰卡德分数为0.86。进一步分析表明,微调预训练语言模型可提高其性能,并且训练数据集的大小对模型有效性起着关键作用。基于提示的技术,特别是使用GPT - 3.5的少样本学习,显示出显著改进,将问题分类的准确率提高了12%,答案分类的准确率提高了45%。该研究证明了预训练语言模型和基于提示的方法为讲阿拉伯语的人群提供精神卫生支持的潜力,为在该领域寻求帮助的个人提供了有价值的工具。这项研究增进了对预训练语言模型在精神卫生保健方面的理解,并强调了它们在讲阿拉伯语的环境中提高可及性和有效性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e89/12072099/75f547094df5/healthcare-13-00985-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验