Kabir Muhammad Khubayeeb, Islam Maisha, Kabir Anika Nahian Binte, Haque Adiba, Rhaman Md Khalilur
Department of Computer Science, Brac University, Dhaka, Bangladesh.
Department of Computer Science and Engineering, Brac University, Dhaka, Bangladesh.
JMIR Form Res. 2022 Sep 28;6(9):e36118. doi: 10.2196/36118.
There are a myriad of language cues that indicate depression in written texts, and natural language processing (NLP) researchers have proven the ability of machine learning and deep learning approaches to detect these cues. However, to date, these approaches bridging NLP and the domain of mental health for Bengali literature are not comprehensive. The Bengali-speaking population can express emotions in their native language in greater detail.
Our goal is to detect the severity of depression using Bengali texts by generating a novel Bengali corpus of depressive posts. We collaborated with mental health experts to generate a clinically sound labeling scheme and an annotated corpus to train machine learning and deep learning models.
We conducted a study using Bengali text-based data from blogs and open source platforms. We constructed a procedure for annotated corpus generation and extraction of textual information from Bengali literature for predictive analysis. We developed our own structured data set and designed a clinically sound labeling scheme with the help of mental health professionals, adhering to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) during the process. We used 5 machine learning models for detecting the severity of depression: kernel support vector machine (SVM), random forest, logistic regression K-nearest neighbor (KNN), and complement naive Bayes (NB). For the deep learning approach, we used long short-term memory (LSTM) units and gated recurrent units (GRUs) coupled with convolutional blocks or self-attention layers. Finally, we aimed for enhanced outcomes by using state-of-the-art pretrained language models.
The independent recurrent neural network (RNN) models yielded the highest accuracies and weighted F1 scores. GRUs, in particular, produced 81% accuracy. The hybrid architectures could not surpass the RNNs in terms of performance. Kernel SVM with term frequency-inverse document frequency (TF-IDF) embeddings generated 78% accuracy on test data. We used validation and training loss curves to observe and report the performance of our architectures. Overall, the number of available data remained the limitation of our experiment.
The findings from our experimental setup indicate that machine learning and deep learning models are fairly capable of assessing the severity of mental health issues from texts. For the future, we suggest more research endeavors to increase the volume of Bengali text data, in particular, so that modern architectures reach improved generalization capability.
书面文本中有无数语言线索可表明抑郁情绪,自然语言处理(NLP)研究人员已证明机器学习和深度学习方法能够检测这些线索。然而,迄今为止,这些将NLP与孟加拉语文献中的心理健康领域相联系的方法并不全面。说孟加拉语的人群能够用其母语更详细地表达情感。
我们的目标是通过生成一个新颖的孟加拉语抑郁帖子语料库,利用孟加拉语文本检测抑郁的严重程度。我们与心理健康专家合作,生成一个临床合理的标注方案和一个带注释的语料库,以训练机器学习和深度学习模型。
我们使用来自博客和开源平台的基于孟加拉语文本的数据进行了一项研究。我们构建了一个用于生成带注释语料库和从孟加拉语文献中提取文本信息以进行预测分析的程序。我们开发了自己的结构化数据集,并在心理健康专业人员的帮助下设计了一个临床合理的标注方案,在此过程中遵循《精神疾病诊断与统计手册(第五版)》(DSM - 5)。我们使用5种机器学习模型来检测抑郁的严重程度:核支持向量机(SVM)、随机森林、逻辑回归、K近邻(KNN)和互补朴素贝叶斯(NB)。对于深度学习方法,我们使用长短期记忆(LSTM)单元和门控循环单元(GRU),并结合卷积块或自注意力层。最后,我们旨在通过使用最先进的预训练语言模型来提高结果。
独立循环神经网络(RNN)模型取得了最高的准确率和加权F1分数。特别是GRU,产生了81%的准确率。混合架构在性能方面无法超越RNN。带有词频 - 逆文档频率(TF - IDF)嵌入的核SVM在测试数据上产生了78%的准确率。我们使用验证和训练损失曲线来观察和报告我们架构的性能。总体而言,可用数据的数量仍然是我们实验的限制因素。
我们实验设置的结果表明,机器学习和深度学习模型相当能够从文本中评估心理健康问题的严重程度。对于未来,我们建议进行更多研究努力,特别是增加孟加拉语文本数据的数量,以便现代架构具有更高的泛化能力。