Suppr超能文献

除序贯器官衰竭评估(SOFA)和急性生理与慢性健康状况评分系统II(APACHE II)外,在危重症中使用现成生物标志物的新型风险分层模型

Beyond SOFA and APACHE II, Novel Risk Stratification Models Using Readily Available Biomarkers in Critical Care.

作者信息

Chung Jihyuk, Ahn Joonghyun, Ryu Jeong-Am

机构信息

Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.

Biomedical Statistics Center, Data Science Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea.

出版信息

Diagnostics (Basel). 2025 Apr 28;15(9):1122. doi: 10.3390/diagnostics15091122.

Abstract

Current severity scoring systems in intensive care units (ICUs) are complex and time-consuming, limiting their utility for rapid clinical decision-making. This study aimed to develop and validate simplified prediction models using readily available biomarkers for assessing in-hospital mortality risk. We analyzed 19,720 adult ICU patients in this retrospective study. Three prediction models were developed: a basic model using lactate-to-albumin ratio (LAR) and neutrophil percent-to-albumin ratio (NPAR) and two enhanced models incorporating mechanical ventilation and continuous renal replacement therapy. Model performance was evaluated against Sequential Organ Failure Assessment (SOFA) score and Acute Physiology and Chronic Health Evaluation (APACHE) II score using machine learning approaches and validated through comprehensive subgroup analyses. Among individual biomarkers, SOFA score showed the highest discriminatory power (area under these curves [AUC] 0.931), followed by LAR (AUC 0.830), CAR (AUC 0.749), and NPAR (AUC 0.748). Our enhanced Model 3 demonstrated exceptional predictive performance (AUC 0.929), statistically comparable to SOFA ( = 0.052), and showed a trend toward superiority over APACHE II (AUC 0.900, = 0.079). Model 2 performed comparably to APACHE II (AUC 0.913, = 0.430), while Model 1, using only LAR and NPAR, achieved robust performance (AUC 0.898) despite its simplicity. Subgroup analyses across different ICU types demonstrated consistent performance of all three models, supporting their broad clinical applicability. This study introduces novel, simplified prediction models that rival traditional scoring systems in accuracy while offering significantly faster implementation. These findings represent a crucial step toward more efficient and practical risk assessment in critical care, potentially enabling earlier clinical interventions and improved patient outcomes.

摘要

重症监护病房(ICU)当前的严重程度评分系统复杂且耗时,限制了其在快速临床决策中的应用。本研究旨在开发并验证使用易于获得的生物标志物来评估住院死亡率风险的简化预测模型。在这项回顾性研究中,我们分析了19720例成年ICU患者。开发了三种预测模型:一种使用乳酸与白蛋白比值(LAR)和中性粒细胞百分比与白蛋白比值(NPAR)的基础模型,以及两种纳入机械通气和持续肾脏替代治疗的增强模型。使用机器学习方法根据序贯器官衰竭评估(SOFA)评分和急性生理与慢性健康状况评估(APACHE)II评分对模型性能进行评估,并通过全面的亚组分析进行验证。在单个生物标志物中,SOFA评分显示出最高的鉴别力(曲线下面积[AUC]为0.931),其次是LAR(AUC为0.830)、CAR(AUC为0.749)和NPAR(AUC为0.748)。我们的增强模型3表现出卓越的预测性能(AUC为0.929),在统计学上与SOFA相当(P = 0.052),并且显示出优于APACHE II的趋势(AUC为0.900, P = 0.079)。模型2的表现与APACHE II相当(AUC为0.913, P = 0.430),而仅使用LAR和NPAR的模型1尽管简单,但仍具有强大的性能(AUC为0.898)。 across different ICU types demonstrated consistent performance of all three models, supporting their broad clinical applicability. 本研究引入了新颖的简化预测模型,其准确性可与传统评分系统相媲美,同时实施速度明显更快。这些发现代表了在重症监护中朝着更高效、实用的风险评估迈出的关键一步,有可能实现更早的临床干预并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8703/12071242/623dc97cc548/diagnostics-15-01122-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验