Meecham Amelia, McCurdy Sara, Frias-Anaya Eduardo, Li Wenqing, Gallego-Gutierrez Helios, Nguyen Phu, Li Yi-Shuan, Chien Shu, Shyy John Y-J, Ginsberg Mark H, Lopez-Ramirez Miguel Alejandro
Department of Medicine, University of California, La Jolla, CA 92093, USA.
Department of Bioengineering, University of California, La Jolla, CA 92093, USA.
Int J Mol Sci. 2025 May 2;26(9):4340. doi: 10.3390/ijms26094340.
Endothelial cells respond to forces generated by laminar blood flow with changes in vasodilation, anticoagulant, fibrinolytic, or anti-inflammatory functions which preserve vessel patency. These responses to flow shear stress are primarily mediated by the modulation of the following transcription factors: Krüppel-like factors 2 and 4 (KLF2 and KLF4). Notably, disturbed flow patterns, which are found in vascular areas predisposed to atherosclerosis, significantly reduce the endothelial expression of KLF2 and KLF4, resulting in changes in the transcriptome that exacerbate inflammation and thrombosis. The endothelial CCM (Cerebral Cavernous Malformation) complex, comprising KRIT1 (Krev1 interaction trapped gene 1), CCM2 (Malcavernin), and CCM3 (Programmed cell death protein 10), suppresses the expression of KLF2 and KLF4. Loss of function of the CCM complex has recently been suggested to protect from coronary atherosclerosis in humans. We thus hypothesized that the silencing of , the central scaffold of the CCM complex, can normalize the atherogenic effects of disturbed flow on the human endothelial transcriptome. Bulk RNA sequencing (RNA-seq) was conducted on human umbilical vein endothelial cells (HUVECs) after the expression of KRIT1 was silenced using specific small interfering RNA (siRNA). The endothelial cells were exposed to three different conditions for 24 h, as follows: pulsatile shear stress (laminar flow), oscillatory shear stress (disturbed flow), and static conditions (no flow). We found that silencing the expression in HUVECs restored the expression of the transcription factors KLF2 and KLF4 under oscillatory shear stress. This treatment resulted in a transcriptomic profile similar to that of endothelial cells under pulsatile shear stress. These findings suggest that inhibition of the CCM complex in endothelium plays a vasoprotective role by reactivating a protective gene program to help endothelial cells resist disturbed blood flow. Targeting CCM genes can activate well-known vasoprotective gene programs that enhance endothelial resilience to inflammation, hypoxia, and angiogenesis under disturbed flow conditions, providing a novel pathway for preventing atherothrombosis.
内皮细胞通过血管舒张、抗凝、纤维蛋白溶解或抗炎功能的改变来响应层流产生的力,这些功能可维持血管通畅。对血流切应力的这些反应主要由以下转录因子的调节介导:Krüppel样因子2和4(KLF2和KLF4)。值得注意的是,在易患动脉粥样硬化的血管区域发现的紊乱血流模式会显著降低KLF2和KLF4的内皮表达,导致转录组变化,加剧炎症和血栓形成。由KRIT1(Krev1相互作用捕获基因1)、CCM2(海绵体蛋白)和CCM3(程序性细胞死亡蛋白10)组成的内皮CCM(脑海绵状畸形)复合物可抑制KLF2和KLF4的表达。最近有人提出,CCM复合物功能丧失可保护人类免受冠状动脉粥样硬化的影响。因此,我们假设,作为CCM复合物核心支架的 沉默可以使紊乱血流对人内皮转录组的致动脉粥样硬化作用正常化。在使用特异性小干扰RNA(siRNA)沉默KRIT1表达后,对人脐静脉内皮细胞(HUVECs)进行了批量RNA测序(RNA-seq)。将内皮细胞暴露于三种不同条件下24小时,如下:脉动切应力(层流)、振荡切应力(紊乱血流)和静态条件(无血流)。我们发现,沉默HUVECs中的 表达可在振荡切应力下恢复转录因子KLF2和KLF4的表达。这种处理导致的转录组谱与脉动切应力下的内皮细胞相似。这些发现表明,内皮中CCM复合物的抑制通过重新激活保护性基因程序来发挥血管保护作用,以帮助内皮细胞抵抗紊乱的血流。靶向CCM基因可以激活著名的血管保护基因程序,在紊乱血流条件下增强内皮对炎症、缺氧和血管生成的耐受性,为预防动脉粥样硬化血栓形成提供了一条新途径。