Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093.
Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2318904121. doi: 10.1073/pnas.2318904121. Epub 2024 Jan 23.
Flow patterns exert significant effects on vascular endothelial cells (ECs) to lead to the focal nature of atherosclerosis. Using a step flow chamber to investigate the effects of disturbed shear (DS) and pulsatile shear (PS) on ECs in the same flow channel, we conducted single-cell RNA sequencing analyses to explore the distinct transcriptomic profiles regulated by DS vs. PS. Integrated analysis identified eight cell clusters and demonstrated that DS induces EC transition from atheroprotective to proatherogenic phenotypes. Using an automated cell type annotation algorithm (SingleR), we showed that DS promoted endothelial-to-mesenchymal transition (EndMT) by inducing the transcriptional phenotypes for inflammation, hypoxia responses, transforming growth factor-beta (TGF-β) signaling, glycolysis, and fatty acid synthesis. Enolase 1 (ENO1), a key gene in glycolysis, was one of the top-ranked genes in the DS-induced EndMT cluster. Pseudotime trajectory analysis revealed that the kinetic expression of ENO1 was significantly associated with EndMT and that ENO1 silencing repressed the DS- and TGF-β-induced EC inflammation and EndMT. Consistent with these findings, ENO1 was highly expressed in ECs at the inner curvature of the mouse aortic arch (which is exposed to DS) and atherosclerotic lesions, suggesting its proatherogenic role in vivo. In summary, we present a comprehensive single-cell atlas of ECs in response to different flow patterns within the same flow channel. Among the DS-regulated genes, ENO1 plays an important role in DS-induced EC inflammation and EndMT. These results provide insights into how hemodynamic forces regulate vascular endothelium in health and disease.
流型对血管内皮细胞(ECs)有显著影响,导致动脉粥样硬化具有局灶性。本研究使用阶跃流室在同一流道中研究扰流(DS)和脉动流(PS)对 ECs 的影响,通过单细胞 RNA 测序分析探索 DS 与 PS 调节的独特转录组谱。整合分析鉴定了 8 个细胞簇,并表明 DS 诱导 EC 从抗动脉粥样硬化表型向促动脉粥样硬化表型转变。使用自动化细胞类型注释算法(SingleR),我们表明 DS 通过诱导炎症、缺氧反应、转化生长因子-β(TGF-β)信号、糖酵解和脂肪酸合成的转录表型,促进内皮-间充质转化(EndMT)。烯醇酶 1(ENO1),糖酵解的关键基因,是 DS 诱导的 EndMT 簇中排名最高的基因之一。伪时间轨迹分析表明,ENO1 的动力学表达与 EndMT 显著相关,ENO1 沉默抑制了 DS 和 TGF-β诱导的 EC 炎症和 EndMT。这些发现与 ENO1 在小鼠主动脉弓内弯曲处(暴露于 DS)和动脉粥样硬化病变中 EC 高表达一致,提示其在体内的促动脉粥样硬化作用。总之,我们展示了一个 EC 对同一流道中不同流型反应的全面单细胞图谱。在 DS 调节的基因中,ENO1 在 DS 诱导的 EC 炎症和 EndMT 中起重要作用。这些结果提供了关于血流动力如何在健康和疾病中调节血管内皮的见解。