Suppr超能文献

静磁场促进聚羟基脂肪酸酯的生物合成:参数优化及代谢组学的机理洞察

Static Magnetic Field Increases Polyhydroxyalkanoates Biosynthesis in : Parameter Optimization and Mechanistic Insights from Metabolomics.

作者信息

Gao Ze-Liang, Cui You-Wei

机构信息

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.

出版信息

Polymers (Basel). 2025 Apr 27;17(9):1190. doi: 10.3390/polym17091190.

Abstract

Polyhydroxyalkanoates (PHAs), as biosynthetic and biodegradable polymers, serve as alternatives to petroleum-based plastics, yet face critical cost barriers in large-scale production. While magnetic field (MF) stimulation enhances microbial activity, the optimal MF parameters and metabolic mechanisms for PHA biosynthesis remain unexplored. This study optimized magnetic field parameters to increase PHA biosynthesis in . A custom-engineered electromagnetic system identified 110 mT of static magnetic field (SMF) as the optimal level for biosynthesis, reaching 77.97 mg/(L·h) PHA volumetric productivity. A pulsed magnetic field caused oxidative stress and impaired substrate uptake despite increasing PHA synthesis. Prolonged SMF exposure (72 h) maximized PHA productivity, while 48 h of exposure attained 90% efficiency. Metabolomics revealed that SMF-driven carbon flux redirection via regulated butanoate metabolism led to a 2.10-fold increase in (R)-3-hydroxybutanoyl-CoA), while downregulating acetoacetate (0.51-fold) and suppressing PHA degradation (0.15-fold). This study pioneers the first application of metabolomics in archaea to decode SMF-induced metabolic rewiring in . Our findings establish SMF as a scalable bioenhancement tool, offering sustainable solutions for the circular bioeconomy.

摘要

聚羟基脂肪酸酯(PHA)作为生物合成且可生物降解的聚合物,可替代石油基塑料,但在大规模生产中面临关键的成本障碍。虽然磁场(MF)刺激可增强微生物活性,但PHA生物合成的最佳MF参数和代谢机制仍未得到探索。本研究优化了磁场参数以增加PHA在[具体微生物]中的生物合成。一个定制设计的电磁系统确定110 mT的静磁场(SMF)为生物合成的最佳水平,PHA体积生产率达到77.97 mg/(L·h)。尽管脉冲磁场增加了PHA合成,但会引起氧化应激并损害底物摄取。长时间暴露于SMF(72小时)可使PHA生产率最大化,而暴露48小时可达到90%的效率。代谢组学表明,SMF通过调节丁酸盐代谢驱动碳通量重定向,导致(R)-3-羟基丁酰辅酶A增加2.10倍,同时下调乙酰乙酸(0.51倍)并抑制PHA降解(0.15倍)。本研究首次在古菌中应用代谢组学来解码SMF诱导的[具体微生物]代谢重编程。我们的研究结果将SMF确立为一种可扩展的生物增强工具,为循环生物经济提供可持续解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d8/12073411/487626312856/polymers-17-01190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验