文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索从LignoBoost木质素中获得的碳结构的特性。

Exploring the Characteristics of Carbon Structures Obtained from LignoBoost Lignin.

作者信息

Coroabă Adina, Apostol Irina, Dascălu Ioan Andrei, Bele Adrian, Marangoci Narcisa Laura, Doroftei Florica, Uritu Cristina Mariana, Spiridon Iuliana

机构信息

"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Vodă 41 A, 700487 Iași, Romania.

Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iași, Romania.

出版信息

Polymers (Basel). 2025 Apr 29;17(9):1221. doi: 10.3390/polym17091221.


DOI:10.3390/polym17091221
PMID:40363003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12073771/
Abstract

In the present study, carbon structures from LignoBoost lignin were synthetized using HNO/HSO one-pot hydrothermal treatment, followed by a thermal treatment. The obtained compounds were characterized using different techniques, such as FTIR, DVS, DLS, XRD, fluorescence imaging and STEM. The formed LCMs presented graphitized structure with quasi-spherical shapes. All obtained materials presented negative values of zeta potential due to the charge from the hydroxyl and carboxyl groups, as confirmed by XPS analysis. All the data obtained sustained the heterogeneous composition of the lignin-based carbon materials, which arise from the complex structure of lignin. Fluorescence imaging demonstrated the potential of the materials as optical imaging agents.

摘要

在本研究中,采用硝酸/硫酸一锅水热法处理并随后进行热处理,合成了来自LignoBoost木质素的碳结构。使用傅里叶变换红外光谱(FTIR)、动态蒸汽吸附(DVS)、动态光散射(DLS)、X射线衍射(XRD)、荧光成像和扫描透射电子显微镜(STEM)等不同技术对所得化合物进行了表征。形成的木质素基碳材料(LCMs)呈现出具有准球形形状的石墨化结构。X射线光电子能谱(XPS)分析证实,由于羟基和羧基的电荷作用,所有获得的材料的ζ电位均为负值。获得的所有数据均支持木质素基碳材料的非均相组成,这源于木质素的复杂结构。荧光成像证明了这些材料作为光学成像剂的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/dfecbafab4ee/polymers-17-01221-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/c3db3eddc075/polymers-17-01221-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/74d5af992ecd/polymers-17-01221-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/80217120bf53/polymers-17-01221-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/bf99b616bde4/polymers-17-01221-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/a781126bcdc4/polymers-17-01221-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/93e7287e5827/polymers-17-01221-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/687cfac6b514/polymers-17-01221-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/e1436ddb5dee/polymers-17-01221-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/a05014bdeebb/polymers-17-01221-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/1d0a29bbb98e/polymers-17-01221-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/2e6eae763e81/polymers-17-01221-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/26e1e7dde356/polymers-17-01221-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/72dbeebd15ac/polymers-17-01221-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/dfecbafab4ee/polymers-17-01221-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/c3db3eddc075/polymers-17-01221-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/74d5af992ecd/polymers-17-01221-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/80217120bf53/polymers-17-01221-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/bf99b616bde4/polymers-17-01221-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/a781126bcdc4/polymers-17-01221-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/93e7287e5827/polymers-17-01221-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/687cfac6b514/polymers-17-01221-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/e1436ddb5dee/polymers-17-01221-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/a05014bdeebb/polymers-17-01221-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/1d0a29bbb98e/polymers-17-01221-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/2e6eae763e81/polymers-17-01221-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/26e1e7dde356/polymers-17-01221-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/72dbeebd15ac/polymers-17-01221-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/12073771/dfecbafab4ee/polymers-17-01221-g014.jpg

相似文献

[1]
Exploring the Characteristics of Carbon Structures Obtained from LignoBoost Lignin.

Polymers (Basel). 2025-4-29

[2]
Nanocomposite Polymeric Materials Based on Eucalyptus Lignoboost Kraft Lignin for Liquid Sensing Applications.

Materials (Basel). 2020-4-2

[3]
Fluorescence Enhancement of Lignin-Based Carbon Quantum Dots by Concentration-Dependent and Electron-Donating Substituent Synergy and Their Cell Imaging Applications.

ACS Appl Mater Interfaces. 2021-12-29

[4]
Characterization of products from hydrothermal carbonization of pine.

Bioresour Technol. 2017-7-27

[5]
Green synthesis of carbon dot structures from and Schottky diode fabrication.

Beilstein J Nanotechnol. 2024-11-7

[6]
Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications.

Int J Biol Macromol. 2018-11-6

[7]
The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models.

Bioresour Technol. 2011-7-27

[8]
Recent advances in lignin-based carbon materials and their applications: A review.

Int J Biol Macromol. 2022-12-31

[9]
Pyrolytic Lignin: A Promising Precursor for the Green Synthesis of Fluorescent Carbon Nanoparticles.

ACS Omega. 2025-3-12

[10]
Interaction of lignin and xylan in the hydrothermal synthesis of lignocellulose-based carbon quantum dots and their application in in-vivo bioimaging.

Int J Biol Macromol. 2022-12-1

本文引用的文献

[1]
Novel Kraft Softwood Lignin-Derived Carbon Quantum Dots: Synthesis, Characterization, and In Vitro Cytocompatibility.

Nanomaterials (Basel). 2024-6-13

[2]
Hydrothermal synthesis of modified lignin-based carbon dots derived from biomass waste for fluorescence determination of valsartan.

RSC Adv. 2024-6-21

[3]
Carbon Quantum Dots: Properties, Preparation, and Applications.

Molecules. 2024-4-26

[4]
Lignin-derived carbon quantum dot/PVA films for totally blocking UV and high-energy blue light.

Int J Biol Macromol. 2024-5

[5]
Solvent-Dependent Photoluminescence Emission and Colloidal Stability of Carbon Quantum dots from Watermelon Peels.

J Fluoresc. 2025-1

[6]
Heteroatom-engineered multicolor lignin carbon dots enabling bimodal fluorescent off-on detection of metal-ions and glutathione.

Int J Biol Macromol. 2023-12-31

[7]
Lignocellulosic Biomass-Based Carbon Dots: Synthesis Processes, Properties, and Applications.

Small. 2023-11

[8]
Sustainable synthesis of lignin-derived carbon dots with visible pH response for Fe detection and bioimaging.

Spectrochim Acta A Mol Biomol Spectrosc. 2023-12-5

[9]
Recent advances in lignin-based carbon materials and their applications: A review.

Int J Biol Macromol. 2022-12-31

[10]
Solvent-Free Pyrolysis Strategy for the Preparation of Biomass Carbon Dots for the Selective Detection of Fe Ions.

Front Chem. 2022-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索