Pehlivan Merve, Atalik Bora, Gokcesular Sezgin, Ozbek Sunullah, Ozbek Belma
Department of Chemical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey.
Brisa Bridgestone Sabanci Tyre Manufacturing and Trading Inc., Kocaeli 41310, Turkey.
Polymers (Basel). 2025 May 1;17(9):1239. doi: 10.3390/polym17091239.
The adhesion between rubber compounds and textile cords plays a critical role in determining the overall performance and durability of rubber-based composites, particularly in tire applications. Despite extensive research on adhesion mechanisms, optimizing adhesion through systematic modeling remains challenging due to the complex interactions between rubber formulations, textile treatment, and processing conditions. This study presents an integrated experimental and predictive modeling approach to investigate and optimize the adhesion performance of nylon 6.6 textile cords in rubber compounds. Initially, the effects of different accelerator types-including diphenyl guanidine (DPG), 2,2'-Dithiobis(benzothiazole) (MBTS), N-tert-butyl-2-benzothiazole sulfenamide (TBBS), and N-cyclohexyl-2-benzothiazole sulfenamide (CBS)-on adhesion properties were systematically evaluated. Key parameters such as cure characteristics, Mooney viscosity, and mechanical properties of the rubber compounds were analyzed using a moving die rheometer (MDR), Mooney viscometer, and tensometer. To enhance adhesion performance, a statistical optimization approach based on the Box-Behnken design was employed, focusing on the influence of accelerator, curing agent, and resin contents. The results indicate that an optimized rubber formulation comprising 1.6 phr curing agent, 0.3 phr resin (HMMM), and 0.5 phr accelerator (MBTS) yields the highest adhesion strength. This study provides the first systematic modeling of adhesion between nylon 6.6 textile cords and rubber compounds using response surface methodology (RSM), offering valuable insights into the material design for improved interfacial bonding in tire manufacturing.
橡胶胶料与纺织帘线之间的粘合在决定橡胶基复合材料的整体性能和耐久性方面起着关键作用,特别是在轮胎应用中。尽管对粘合机理进行了广泛研究,但由于橡胶配方、织物处理和加工条件之间复杂的相互作用,通过系统建模来优化粘合仍然具有挑战性。本研究提出了一种综合实验和预测建模方法,以研究和优化尼龙6.6纺织帘线在橡胶胶料中的粘合性能。最初,系统评估了不同促进剂类型——包括二苯基胍(DPG)、2,2'-二硫代二苯并噻唑(MBTS)、N-叔丁基-2-苯并噻唑次磺酰胺(TBBS)和N-环己基-2-苯并噻唑次磺酰胺(CBS)——对粘合性能的影响。使用动模流变仪(MDR)、门尼粘度计和拉力试验机分析了橡胶胶料的关键参数,如硫化特性、门尼粘度和机械性能。为了提高粘合性能,采用了基于Box-Behnken设计的统计优化方法,重点关注促进剂、硫化剂和树脂含量的影响。结果表明,由1.6 phr硫化剂、0.3 phr树脂(六甲氧基甲基三聚氰胺)和0.5 phr促进剂(MBTS)组成的优化橡胶配方具有最高的粘合强度。本研究首次使用响应面方法(RSM)对尼龙6.6纺织帘线与橡胶胶料之间的粘合进行了系统建模,为轮胎制造中改善界面粘合的材料设计提供了有价值的见解。